Le mètre: une matrice universelle à l’origine mystérieuse

  • Comme tout le monde, je l'utilise tous les jours, quand je fais des achats, quand je me déplace.
  • Comme tout le monde, je croyais tout savoir de lui.
  • Comme tout le monde, je pensais que son origine n'avait aucun mystère
  • A l'école d'ingénieur, je pensais qu'on m'avait tout appris de lui…

Jusqu'au jour où j'ai découvert que des faits inexpliqués restaient ignorés par les historiens et les archéologues…

pierre-angulaire-de-la-cathédrale-de-Fribourg-detail-mesure-diagonale-1-metre
Le mètre présent dans la Pierre angulaire de la cathédrale de Firbourg datant du XIIIème siècle !

Le Mètre est universel, il est omniprésent. Il est avec nous ici, en ce moment même. Tu le vois chaque fois que tu regardes par la fenêtre ou lorsque tu allumes la télévision. Tu ressens sa présence quand tu pars au travail, quand tu vas à l'église, ou quand tu paies tes factures.... 💊

Regardes autour de toi, je suis certain qu'il est là et que tu ne fais même plus attention à lui..
Il a servi à confectionner tes habits..
Il a servi à dimensionner la pièce et les meubles qui t'entourent..

Il porte bien son nom de maître....

La vérité sur le mètre...

Si tu veux rester dans tes croyances, c'est le moment de quitter cette page, tu pourra faire des beaux rêves et penser ce que tu veux.

Si tu veux continuer de découvrir l'origine de cette matrice qu'est le mètre, alors continue la lecture et partons à l'aventure.

N'oublie pas, je ne t'offre que la vérité, rien de plus.

  • Nous irons en pleine révolution française découvrir la philosophie qui motive et anime vraiment les révolutionnaires.
  • Nous nous intéresserons à leurs lectures....
  • Nous irons voir pourquoi Gaspard Monge, un des 5 membres de la commission qui a déterminé la définition du mètre a pillé les bibliothèques du Vatican, de Venise, Bologne et de Pavie.... Il a ramené en France des livres anciens et des papyrus égyptiens.
  • Nous verrons que de nombreux monuments anciens dans le monde ont des dimensions en mètre !! Ceci sans que les archéologues ne s'en préoccupent !
  • C'est le cas notamment des pierres angulaires de plusieurs cathédrales.
  • Nous explorerons pourquoi de nombreux protagonistes de l'histoire du mètre se sont intéressés à la pyramide de Khéops....
  • ... Jusqu'au point que Napoléon lui même est allé voir les pyramides, avec son armée, mais aussi avec 167 scientifiques recrutés par le même Gaspard Monge évoqué ci-dessus.
  • Pourquoi avoir besoin d'autant de scientifiques pour mener une guerre ?
  • Nous évoquerons le récit de l'aventure rocambolesque de la mesure du méridien entre Dunkerque et Barcelone par Méchain et Delambre... et de la terrible erreur faite par Méchain qui l'a rendu suicidaire.... Il voulait brûler ses carnets... sa femme a du venir le chercher dans un monastère abandonné dans les montagnes au dessus de Barcelone où il s'était reclus....
  • Fait également étrange, que faisait le fils Méchain en égypte et pourquoi il est rentré plus tôt que les autres de la campagne d'égypte ?
  • Nous verrons aussi que le postulat de base de la mesure du méridien entre Dunkerque et Barcelone était voué à l'échec... et n'a pas pu être utilisé !! (contrairement à ce que nous disent la plupart des livres d'histoire !)
  • Nous étudierons le rôle joué par les Francs Maçons dans cette histoire. Quand on pense à eux, on pense tout de suite à l'équerre et au compas. Mais un autre outil de maçon, le fil à plomb est peut être plus important dans cette histoire.

1er épisode de la saga....

Le sujet est vaste, il faut quelques prémices de base pour bien comprendre de quoi on parle... et c'est peut être par manque de connaissances de base que finalement personne pendant 200 ans n'a remarqué qu'il y a des "bugs" dans l'histoire de la création du mètre !

Voici une petite vidéo facultative qui pose le décors et montre à l'aide d'un pamplemousse les bases des moyens de repères sur notre planète. Qu'est-ce qu'un méridien, un équateur, une latitude, une longitude....

Si tu veux creuser encore plus sur les outils de "navigation" sur notre planète.... voici cette page...

Mais commençons plutôt par le 1er épisode de la saga du mètre. Nous allons remettre en forme la chronologie des événements, ceci pour avoir des faits solides sur lesquels ensuite découvrir la véritable origine du mètre...

C'est parti dans le Terre-ier du Lapin blanc.....

Résumé des points clés sur l'origine du mètre en vidéo

La définition du mètre a été changée

Si l'on cherche la définition actuelle du mètre on va nous indiquer que c'est "la longueur du trajet parcouru par la lumière dans le vide pendant une durée d'un 299 792 458e de seconde"

C'est une définition issue d'un raisonnement circulaire, car le nombre 299 792 458 est en fait la vitesse de la lumière en mètre par seconde !

La définition d'origine, établie durant la révolution française, n'est pas ça du tout. C'est le 10 000 0000 ème du 1/4 du méridien, la circonférence de la Terre qui passe par les pôles. (la définition du méridien aussi a changée, maintenant elle désigne la moitié du cercle d'un pôle à l'autre)

La définition du mètre nécessite donc de mesurer la circonférence de la Terre.

définition du mètre

Chronologie de l'histoire d'une mesure universelle

vers -200

Eratosthène, alors à la tête de la bibliothèque d'Alexandrie, mesure la circonférence de la Terre avec une précision inégalée pendant 2000 ans: 39 375 km (aujourd'hui on mesure la circonférence qui passe par les pôles à 40 007,864 km)

Eratosthene_mesure_terre

829

Le Calife Al-Ma'mūn crée l'observatoire de Bagdad. Il engage de nombreux scientifiques qui collectent et traduisent des textes scientifiques, notamment perses et grecs. Afin de vérifier les théories astronomiques de l'époque Al-Ma'mūn fait mesurer la circonférence de la Terre. Ses arpenteurs déterminent 37 000 km.

C'est également sous le règne de Al-Ma'mūn que vécu le mathématicien Al-Khwârizmî dont le nom a donné le mot "algorithme". Ce dernier est celui qui a importé d'Inde le zéro et la notation positionnelle décimale et l'a diffusée dans tout le monde arabe. (Ce qui nous fait appeler à tord les chiffre que nous utilisons des "chiffres arabes").

832

Le Calife Al-Ma'mūn visite les pyramides de Gizeh à la recherche de trésors. l'égyptologue Salima Ikram nous explique que Al Mamoun ne cherchait pas n'importe quel trésor... mais des cartes du monde et des objets magiques. (Probablement ceux décrits dans le papyrus Westcar). Peut être que le Calife voulait confirmer sa mesure de la Terre ?

L'entrée de la pyramide de Khéops, actuellement utilisée par les touristes est attribuée à Al Mamoun. Cependant l'explication n'est pas exacte. Al-Mamoun n'a pas créé le passage, il l'a juste agrandi.

Murtada Ibn al-Khafîf a écrit sur l'entrée dite d'al-Ma'moun, de la Grande Pyramide : "Le Commandeur des Fidèles le Mamune [al-Ma'moun], Dieu lui fasse miséricorde, étant entré dans le pays d'Égypte, et ayant vu les Pyramides, eut envie de les démolir , pour le moins quelqu'une d'elles, afin de savoir ce qui était dedans. Sur quoi on lui parla ainsi : Vous désirez une chose qui ne vous est pas possible. Si vous l'entreprenez et que vous n'en veniez pas à bout, ce sera une honte au Commandeur des Fidèles. À quoi il répondit : Je ne puis me passer d'en découvrir quelque chose. Il fit donc travailler à la brèche qui y était déjà commencée, et y fit de grandes dépenses." - p.50 de l'égypte de Murtadi fils du gaphiphe. (ibn-el-afif)

Il est plus logique qu'il ait élargit la brèche, car sur 920m de périmètre ce serait un sacré coup de chance de tomber juste là où il y a les couloirs et en plus de passer du bon côté pour contourner les bouchons de granit. La brèche devait probablement être une sortie plutôt qu'une entrée !

995

Le mathématicien, astronome, physcien, philosophe (etc..) persan Al-Biruni calcula le rayon de la Terre à 6 339,6 km (ce résultat fut utilisé en Europe au XVIe siècle). La méthode est originale, Il part du principe bien sage que les angles sont facile à mesurer, mais les distance difficile à évaluer. Dans le sud du Khwārizm, sur la rive gauche de l'Amū Daryā, il mesure la hauteur d'une montagne par des visées à l'astrolabe. Puis, depuis le sommets de la montagne, bien à angle droit à l'aide d'un fil à plomb, il mesure l'angle de l'horizon. Le reste n'est que calcul de trigonométrie.

mesure rayon de la terre par al biruni

Al-Biruni laisse le premier écrit qui subdiviser l'heure de manière sexagésimale en minutes, secondes, tiers et quarts, en 1000, lors d'une discussion sur les mois juifs.

1528

Le médecin du roi de France Henri II, Jean Fernel publie Cosmotheoria un livre dans lequel il décrit comment il a mesuré un degré de méridien entre Paris et Amiens. Il a compté le nombre de tours de roue de sa voiture, soit 17024. De là il détermine un degré de méridien de 340480 pieds soit 56 746 toises (1,959m) donc 40 019 km. Une précision impressionnante !

Plusieurs essais ont été fait les siècles suivants, mais pas avec autant de précision. Pour le détail des essais voir cette chronologie des mesures de la Terre.

jacques cassini traité de la grandeur et de la figure de la terre al-mamoun eratosthène fernel
L'astronome Jacques Cassini de l'observatoire de Paris étudie les travaux de ses prédécesseurs qui ont mesuré la taille de la Terre. Notamment Eratosthène, Al-Mamoun, et Fernel. - Manuscrit du livre De la grandeur de la terre et de sa figure - 1718.

1583

Galileo Galilei, âgé de dix-neuf ans, découvre, en chronométrant à l'aide de son pouls, la régularité des oscillations des lustres de la cathédrale de Pise. De retour chez lui, il compare les oscillations de deux pendules et travaille à la loi de l'isochronisme des pendules, dont le Néerlandais Christian Huygens découvrira la vraie loi de l'isochronisme rigoureux en 1659.

Le lustre de la cathédrale de Pise
Le lustre de la cathédrale de Pise

Grâce à Euclide, qui l'éblouit, Galilée réoriente ses études de médecine vers les mathématiques. Dès lors, il se réclame de Pythagore, de Platon et d'Archimède et contre le géocentrisme aristotélicien.

1585

L'ingénieur, mathématicien, physicien néerlandais Simon Stevin publie en français la traduction de son petit traité "De Thiende" (la disme) dans L'arithmétique.

Stevin fait la promoton du système décimal. Il déclare que l'utilisation universelle du système décimal est inéluctable.

Il propose une notation dans la quelle les décimales sont affectées de leur puissance de dix, marquées par un petit cercle autour de l'exposant. Une notation qui ne sera pas très utilisée.

notation decimale simon stevin

Son traducteur en latin est Willebrord Snell (souvent dit Snellius). Voir ci-dessous.

1617

Le mathématicien, physicien néerlandais Willebrord Snell, dit Snellius se veut être le nouvel Eratosthène batave. Il calcule le rayon de la Terre.

Il mesure le 1° de méridien entre les villes d'Alkmaar et de Berg-op-Zoom, via 14 points de triangulation. C'est la première mesure opérée par triangulation.

Il obtient 107,395 km la valeur actuellement mesurée étant de 111,281 km.

Il fait partie d'un comité pour déterminer les instruments de navigation pour la marine Hollandaise. Dans ce comité on retrouve Simon Stevin, qui fait la promotion du système décimal.

C'est un élève de Joseph Juste Scaliger. Durant ses voyages en Europe, à Prague, il rencontre notamment Tycho Brahe et Kepler.

1636-1640

L'astronome anglais John Greaves a appris les langue orientales en s'intéressant aux œuvres des astronomes de l'Antiquité orientale. Il enseigne à Oxford. Il collecte des manuscrits grecs et arabes pour le compte de l'archevêque de Canterbury.

En 1636 il part en voyage à Rome puis en égypte. Il a pour objectif de cataloguer toutes les mesures utilisées dans le monde antique et moderne, et d'en décrire les valeurs et les relations. En 1639 il visite et mesure les pyramides. En 1646 il publie un livre avec ses mesures de la grande pyramide de Gizeh. "Pyramidographia, or, A description of the pyramids in Ægypt"

Pyramidographia-kheops-graves

1644

Marin Mersenne, un moine français publie le livre Cogitata physico-mathematica dans lequel il propose d'utiliser le pendule comme base pour une unité de mesure de longueur.

Mersenne est un érudit qui a déjà publié en 1633 un livre nommé Harmonie universelle, pendant longtemps une référence dans le domaine de la musique. Ce livre se base notamment sur les découvertes acoustiques de Vincenzo Galilei, le père de Galileo avec qui Mersenne correspondait.

En 1626, Mersenne se lie d'amitié avec René Descartes et publie des traductions d'Euclide, d'Apollonius de Perge (qui habitait Alexandrie), d'Archimède, de Serenus, de Ménélas et de Maurolycus. Il aime comparer les théories des anciens et des modernes.
En 1635 Mersenne crée l'Academia Parisiensis, une académie dans laquelle par ses lettres et les réunions qu'il organise, il met en contact 140 savants et préfigure l'académie des sciences et le système de publication scientifique.

1658

Le Hollandais Christian Huygens, membre de l'académie de Mersenne, travaille sur le pendule oscillant dans l'idée de réguler des horloges. Il découvre la formule de l'isochronisme rigoureux en décembre 1659 : lorsque l'extrémité du pendule parcourt un arc de cycloïde, la période d'oscillation est constante quelle que soit l'amplitude.

pendule cycloidal


(Pour le côté cycloïde, il s'aide des travaux de l'architecte anglais Christopher Wren, un personnage passionnant, également co-fondateur de la Royal Society, qui a construit la moité de Londres ! Surtout après le grand incendie de 1666. Il méritait bien son intégration chez les francs Maçons. Il a notamment construit 51 églises et la cathédrale St-Paul, mais aussi l'observatoire de Greenwich qui marque le méridien d'origine actuel)
Huygens détermine la période du pendule simple. Soit:

T = 2π √l/g

Il commence a imaginer que la force centrifuge due à la rotation de la Terre modifie la pesanteur suivant la latitude. Il imagine que la Terre n'est pas une sphère. Mais qu'elle est aplatie. (Il publiera ces idées 28 ans plus tard)

1660

La Royal Society de Londres envisage, d'utiliser la longueur d'un pendule battant la seconde comme base d'une unité de longueur selon une proposition de Christian Huygens et Ole Christensen Rømer qui suivent l'idée déjà formulée en 1644 par Marin Mersenne. C'est là le début du mètre avec son ordre de grandeur actuel.

=> Le mètre serait-il anglais ?

1666 (ou juste avant)

L'anglais John Wilkins, membre co-fondateur de la Royal Society, propose l'adoption d'une mesure universelle (universal measure), d'unités décimales, basée sur le principe d'un pendule battant une seconde, et dont la longueur fondamentale est de 38 pouces prusses (1 prussian inch = 26,15 mm), soit de 993,7 mm (ou 39,25 pouce de Londres). Il publie cette idée en 1668, mais ce n'est que la seconde édition, car tous les exemplaires imprimés de la 1ère ont brulés dans le grand incendie de Londres en 1666.

1666

Publication de la traduction française du livre "L'Égypte de Murtadi"(où il est question des pyramides, du débordement du Nil & autres merveilles de cette province..). C'est la traduction par Pierre Vattier, professeur du roi en langue arabique. C'est la traduction d'un livre en arabe de l'égyptien Ibn al-ʿAfīf, Murtaḍá ibn Ḥātim ibn al-Musallam (1154-1237). Ce manuscrit faisait partie de la bibliothèque du cardinal Mazarin.

1668

L'abbé Picard propose le pied universel qui vaut 1/3 de la longueur d'un pendule qui bat la seconde.

1669

L'abbé Picard mesure un arc de méridien, afin de mesurer la Terre et dans le but défini par Colbert de cartographier la France de façon géométrique. La région choisie se trouve à l'est de Paris, entre Malvoisine et Sourdon-Amiens. Le livre Mesure de la Terre par l'abbé Picard. C'est la base de la Méridienne de France.

Méridienne de Picard
La méridienne de Picard

1670

Gabriel Mouton propose d'utiliser la base 10 comme division d'une unité de mesure universelle qu'il appelait virga, (la verge). Cette unité correspond à un millième de la longueur d'une minute d'arc de méridien ~1,8m.
(La longueur moyenne d'une minute d'arc de méridien étant de 1852 mètres. Cette longueur est de nos jours le mille nautique. )

définition du mille nautique
Définition du mille nautique

1675

L'italien Tito (Livio) Burattini publie un livre nommé "Misura universale" dans lequel il reprend l'idée vue chez John Wilkins du pendule comme base d'une mesure universelle. Il traduit "universal measure" par "metro cattolico".

Dans la préface du livre "Misura universale", Burattini décrit sa visite de la grande pyramide de Gizeh en 1639 avec John Greaves, l'astronome anglais spécialisé en métrologie ancienne cité plus haut. Burattini propose tout un système d'unité de mesure reliées entre elles.

"Après avoir pris toutes les mesures dont nous disposons, M. Graves a éclaté en ces termes, oh combien le monde souffre de ne pas savoir combien de mesures des anciens Egyptiens sont contenues dans la longueur et la largeur de cette pièce, ou du moins de la Zone, dont nous connaissions la longueur de la mesure égyptienne. Donc, puisque nous ne gardons pas ces souvenirs, assurons-nous au moins que cette structure, qui durera plusieurs milliers d'années, soit comparée et proportionnée à la mesure de ma patrie"

Burattini se dit inspiré par sa visite de la pyramide de Khéops:

"bien que je ne pense à rien d'autre, sauf à établir une mesure prise depuis la chambre haute, et depuis l'arche de la Pyramide égyptienne placée la plus près du Nil : mais rien de moins que le désir, que j'ai vu dans ces deux grandes figures, de perpétuer les mesures et les poids m'a tellement stimulé que de temps en temps, j'y pense de plus en plus, et je l'ai enfin mis en place ; je ne sais pas si je serai arrivé à l'approbation universelle ;"

burattini-mètre-pyramide

Burattini base tout sa défintion du mètre sur un pendule qui bat la seconde.

Il trouve une mesure correspondant à environ 993,9 mm actuels. (c'était avant la théorie de la gravitation de Newton et la compréhension que la longueur d'un pendule varie avec la latitude à cause de l'effet de la gravité)

pendule Burattini

1680 (environ)

Le grand savant Isaac Newton, étudie les mesures de la pyramide de Khéops, notamment dans le livre de John Greaves, Pyramidographia, or, A description of the pyramids in Ægypt, George Badger, London, 1646. (mentionné plus haut)

Il recherche la valeur précise de la circonférence de la Terre pour valider sa théorie de la gravité. Pour ce faire, il pensait devoir trouver la valeur précise de l'unité de mesure qui a été utilisée pour construire la pyramide, la coudée royale égyptienne qu'il nomme: "Cubiti Regii".

Newton a entendu parlé de la circonférence de la Terre donnée par Thales et Anaximandre au VIe siècle avant J.-C., soit 400 000 "stades". Mais comme la mesure du stade s'est perdue, il cherche à la retrouver grâce à la coudée royale égyptienne.

Ainsi Newton compare bon nombre de mesures, et écrit les conversions dans d'autres unités de mesures, comme le pied romain, le pied drusien, ou la coudée des hébreux dont il recherche également la valeur afin de déterminer la mesure du exacte du temple de Salomon.

On peut lire dans le manuscrit de Newton qu'il pense que la coudée vaut 1/100 de la largeur de la pyramide. (Ce qui ne fonctionne pas !)

Newton utilisera pour finir la mesure du degré de méridien effectuée par l'abbé Picard en 1669.

manuscrit de Newton sur l'étude de la pyramide de Khéops à la recherche de la coudée royale égyptienne pour trouver la circonférence de la terre
Recto du manuscrit de Newton vendu en décembre 2020. Si ce manuscrit est en partie du brûlé, c'est que Diamond le chien de Newton a renversé une bougie dessus....

Newton n'est pas passé loin de trouver la circonférence de la Terre en étudiant la pyramide de Khéops. Il est maintenant étonnant de voir la similitudes des nombres de 400 000 stades et de 40 000 km pour la mesure de la circonférence de la Terre. (à 7km près d'après les mesures les plus récentes du méridien)

Selon cette idée, un stade vaudrait donc 100 mètres !

Plus loin, on verra qu'en 1780 Paucton publiera un traité de métrologie où il reprend des sources anciennes qui disent que le côté de la grande pyramide vaut 1 stade. Newton pensant qu'il devait trouver une unité de mesure qui vaut 1/100 du côté de la pyramide, soit 1/100 d'un stade aurait trouvé là le mètre !!!

Le soucis, c'est que la pyramide fait 230m de côté et pas 100.. et que Newton cherchait la coudée royale, qui vaut 0.5236 m.

Il est à préciser que Newton était en plus d'un grande scientifique, un grand alchimiste (raison pour laquelle Newton était aussi le chef de la monnaie royale, les rois engageant souvent des personnes capables de transformer le plomb en or pour gérer la monnaie...).

C'est dans ce milieu de l'alchimie qu'il est souvent raconté que les bâtisseurs des pyramides avaient mesuré la taille de la Terre !

1720

L'astronome Jacques "Cassini dans le livre De la grandeur, et de la figure de la terre pages 158 et 159, proposoit un pied géométrique qui seroit la six-millième partie de la minute du grand cercle, ou bien une brasse de deux de ces pieds et qui seroit là dix-millionième partie du demi-diamètre de la terre, ou enfin une toise de six de ces: mêmes pied ensorte que le degré eût été de 60 060 toises."

C'est par ses mots que Delambre, dont nous parlerons plus loin, raconte la proposition de Jacques Cassini de crée une unité de mesure universelle basée sur le rayon de la Terre.

Jacques "Cassini dans le livre De la grandeur, et de la figure de la terre pages 158 et 159, proposoit un pied géométrique qui seroit la six-millième partie de la minute du grand cercle, ou bien une brasse de deux de ces pieds et qui seroit là dix-millionième partie du demi-diamètre de la terre, ou enfin une toise de six de ces:

1735 - Expéditions géodésiques françaises

Entre 1735 et 1744 Charles Marie de La Condamine, mandaté par l'académie des sciences, mène une expédition à Quito en équateur pour mesurer les 3 premiers degrés de méridien depuis l'équateur et ainsi déterminer la figure de la Terre. Est-elle aplatie aux pôles comme le prétend Newton, ou à l'équateur comme le prétends Descartes ?
Ce sont les expéditions géodésiques françaises.

figure de la terre ellipsoide mesure du degre meridien
La mesure de la longueur d'un degré de méridien permet de déterminer la "figure de la Terre".

Ainsi deux équipes sont envoyées mesurer des méridiens près des pôles et près de l'équateur (pour avoir les plus grande différences). Finalement c'est Newton qui avait raison: la Terre est aplatie aux pôles. Dès 1737, on considère que la Terre est une ellipsoïde.

1748

Pendant son expédition en équateur, Charles Marie de la Condamine imagine un étalon universel de longueur basé sur un pendule qui bat la seconde. Mais pas n'importe où, à l'équateur. (439.15 lignes)

Il présente cette idée à l'académie des sciences le 24 avril 1748 et elle sera publiée en 1776 dans un livre publié après sa mort en 1774.

panorama de points de mesures la condamine
Panorama de différents points de mesures

1766

Mathieu Tillet réalise une soixantaines d'étalon de la Toise du Pérou (la toise utilisée pendant l'expédition de la Condamine au Pérou), et la diffuse dans toute la France.

1774

Turgot, contrôleur des Finances, propose au marquis de Condorcet le travail difficile d'unification des mesures. Mais en 1776 Turgot est remplacé par Necker et la réforme est abandonnée.

1780

Alexis-Jean-Pierre Paucton publie un traité de métrologie dans lequel il prétend que les anciens avaient déjà mesuré la taille de la Terre et tiré de là une unité de mesure universelle de laquelle toutes les autres sont dérivées. Paucton prétend que cette unité de mesure originelle est conservée en égypte. Ainsi il montre, sur le papier, que le côté de la grande pyramide de Gizeh vaut 1 stade et que le degré de méridien à cette latitude vaut 500 stades, soit 500 fois le côté de la grande pyramide.

"D'où je conclus que le côté de la base de la grande pyramide étoit d'un stade juste tel qu'il est défini par Marin de Tyr, par Ptolémée & par Héron."

Paucton cite beaucoup d'auteurs anciens qui associent le coté de la pyramide a 1 stade.

En 1806 Delambre réfutera les calculs de Paucton sur la base de mesures toutes fraiches de la pyramide faites par les savants de la campagne napoléonienne en égypte.

J'ai personnellement aussi tenté de reprendre les calculs de Paucton, mais bien que le ordres de grandeurs soit souvent assez juste, je ne trouve rien qui colle vraiment.

Cependant, en 1817 Edmée Jomard qui a participé au mesures de la Grande pyramide de memphis, confirmera qu'il y a un lien entre le degré de méridien et le périmètre de la pyramide.

On verra ceci plus loin, mais pour le moment revenons aux propos de Paucton:

"Je prouve que les Anciens avoient un étalon naturel de mesure, pris dans la grandeur d'un degré du méridien, & que dès les temps ses plus reculés, à remonter même avant la fondation de Ninive, de Babylone & des Pyramides d'Egypte, la circonférence de la Terre avoit été mesurée aussi exactement qu'elle l'a été dans ce siécle ; démontre que cet étalon immatriculé dans la nature & de la valeur de la quatre-cent-millieme partie d'un degré du méridien , étoit universel & commun à l'Asie, à l'Afrique & à l'Europe, à quelques exceptions près ; qu'il étoit celui des Perses, des Arabes, des Juifs, des Egyptiens, des Espagnols qui l'ont conservé jusqu'à ce jour presque dans son intégrité, des Gaulois , des Bretons & des Germains ou Allemands, chez qui on le retrouve encore aujourd'hui dans la plupart des Villes les plus considérables…."

paucton metre p105 pendule vs meridien degre ancien mesure terre
Paucton pense, contrairement à la plupart de ses contemporains, que la longueur d'une fraction de méridien est plus fiable comme étalon de mesure qu'un pendule qui bat la seconde.
paucton livre métrologie pyramide mesure méridien.
Paucton part d'une idée intéressante: se baser sur les monuments ayant traversé les ages pour retrouver les étalons de mesure des anciens. Il voit un lien entre la pyramide et le degré de méridien.

1787

Volney publie son livre "Voyage en Syrie et en Égypte, pendant les années 1783, 1784 et 1785" (et le tome 2). Ces récits de voyage et la mention des pyramide d'égypte, attise l'intérêt du public pour l'égypte. C'est surtout l'ouvrage suivant de Volney, pulbié en 1791: Les ruines, ou Méditation sur les révolutions des empires qui influencera un certain Talleyrand. (On en reparlera plus loin...)

Volney est tout un personnage. Il arrive a Paris à 19 ans vers 1777. Il y rencontre des personnages comme Condorcet et Diderot. Il prend part à la réception de Benjamin Franklin, ce père fondateur des USA étant le 1er ambassadeur des USA en France entre 1778 et 1785. Ces grands esprits libres confortes l'athéisme et le matérialisme de Volnay. Il décrit par exemple le christianisme comme un culte à une allégorie solaire.

De ses études de médecine, il retiendra surtout l'envie d'apprendre les langues orientales et d'aller enquêter sur le terrain des récits bibliques pour comprendre l'origine des religions. Ce qu'il fera en se rendant en Egypte et en Syrie.

Puis, il se rendra aux USA en 1795 pour étudier ce pays de liberté décrit par son mentor Benjamin Franklin. Il sera même reçu avec honneur par George Washington.

Volney se rendra aussi en Corse, c'est là qu'il fera connaissance avec un certain Napoléon Bonaparte encore passablement inconnu. Plus tard il deviendra son confident. On y reviendra plus tard.

1790

Le 8 mai 1790 Talleyrand propose à l'assemblée nationale un décret pour définir une nouvelle unité de mesure universelle. Il décrit qu'il y a déjà un projet existant. Que ce serait bon pour le commerce, que Turgot y était favorable. La méthode ancienne consiste à créer des étalons et les envoyer dans toutes les villes du pays. Mais ce n'est pas une mesure universelle. Les étalons peuvent se perdre et être modifiés.

Ainsi il y a 2 idées pour créer un étalon universel:

  • la première c'est de se baser sur la mesure d'un degré de méridien. "La première consisteroit à adopter pour élément de nos mesure linéaires la soixante-millième partie de la longueur du degré du méridien coupé en deux parties égales par le quarante-cinquième parallèle, & dont la la longueur a été déterminée à 57 030 toises par M. de la Caille. Cette mesure élémentaire s'est trouvée avoir 5 pieds & 8 pouces 5 lignes un quart; elle s'appelleroit un miliaire. Mille milliaires feroient un mille, trois mille feroient une lieue; & vingt lieues composeraient un degré. Le milliaire tiendroit lieu de la toise, dont il ne diffère que de 42 lignes 3 quarts, et se diviseroit comme elle en 6 parties, donc chacune représenteroit un pied."
  • La seconde c'est de se baser sur la longueur d'un pendule qui bat la seconde à la latitude de 45°, soit la moyenne entre l'équateur et les pôles. (36 pouces, 8 lignes et 52 centièmes) (440,4 lignes ici) Talleyrand est favorable a cette seconde solution et propose même que le roi (encore au pouvoir) s'arrange avec les anglais pour établir un étalon commun.

13 juillet 1790

Le secrétaire d'État des USA, Thomas Jefferson propose une nouvelle unité de mesure basée sur la longueur du pendule à 45° de latitude. Il y a une coordination avec les français. La seule différence réside dans le fait que Jefferson propose un pendule avec une tige métallique et non un fil.
"Plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States"

Août 1790

Le roi Louis XVI accepte le décret proposé par Talleyrand. L'Académie des Science est mandatée pour la réforme des unités de poids et mesures.

27 octobre 1790

Une première commission composée de Borda, Coulomb, La Grange, La place, Lavoisier, Tillet et Condorcet recommande l'utilisation du système décimal pour toutes les unités de mesure. (aussi poids et monnaie)

1791

19 mars 1791 Le quart du méridien est choisi comme base de l'unité de mesure universelle. Et on oublie la collaboration internationale.

Le choix s'est fait par une commission composée de Borda, La Grange, La place, Monge et Condorcet.

(On retrouvera Gaspard Monge un peu plus tard en égypte à faire la course pour être le premier au sommet de la pyramide de Khéops...)

Le quart du méridien est choisi comme base de l'unité de mesure universelle.
Le quart du méridien terrestre deviendroit donc l'unité réelle de mesure.

Bien que le 1/4 du méridien est choisi comme "l'unité réelle de mesure", tout est fait pour coller à l'autre définition rejetée de la longueur du pendule qui bat la seconde.

"Nous nous bornerons à dire ici que cette dix millionième partie du quart du méridien, qui feroit notre unité usuelle de mesure, ne différeroit du pendule simple que d’un cent quarante cinquième environ , & qu’ainsi l’une et l'autre unité conduisent à des systêmes de mefure absolument semblables dans leurs dispositions."

Justification du choix du 1/4 du méridien plutôt que du pendule

Il est étrange dans ce rapport de 12 pages d'en voir 2 qui sont consacrées au rejet de la définition du mètre par la longueur d'un pendule qui bat la seconde, mais de voir seulement 2 lignes qui adopte la proposition du quart du méridien sans qu'on y voit de réelle motivation.

Le choix semble donc ici plutôt motivé par le rejet de certaines propositions plutôt que l'adoption du 1/4 du méridien.

3 propositions de définitions sont débattues:

  • la longueur du pendule qui bat la seconde
  • la longueur du 1/4 du méridien
  • la longueur du 1/4 de l'équateur

La définition du pendule, bien que la préférée de tous, est écartée car elle dépend d'une mesure arbitraire: la seconde !

"Cependant nous devons observer que cette unité, ainsi déterminée renferme en elle-même quelque, chose d’arbitraire. La seconde de temps est la quatre-vingt six mille quatre centième partie du jour, & par conséquent une division arbitraire de cette unité naturelle. Ainsi pour fixer l’unité de longueur, on emploie non-seulement un élément hétérogène (le temps) mais un élément arbitraire."

(Une pirouette est proposée pour conserver l'idée du pendule, c'est de concevoir un pendule hypothétique qui ne ferait qu'une oscillation par jour..... Après réflexion un tel pendule aurait la taille de la Terre à la Lune... du coup vraiment trop hypothétique pour être utilisé... )

L'idée du quart de l'équateur est rejetée car c'est trop loin de la France. De plus cet étalon ne serait pas assez universel, vu que chaque nation est sur un méridien, mais rares sont les nations sur l'équateur.

C'est ainsi que le 1/4 du méridien est choisi, car il se mesure en France.

Il est peut être utile de rappeler que des mesures à l'équateur ont déjà été réalisées 50 ans plus tôt et de l'autre côté de l'atlantique. La logistique d'une telle expédition devait donc être possible. (bien que c'était la mesure de 3° du méridien à l'équateur qui a été fait et non l'équateur lui même.)

26 mars 1791

L'assemblée nationale accepte la recommandation de la commission.

Avril 1791

L'académie des sciences confie la mesure du méridien à Méchain, Legendre et J.-D Cassini. Seul Méchain accepte.

Pierre Méchain

13 septembre 1791

"Volney" (contraction de Voltaire et Ferney... un fan de Voltaire) publie un livre intitulé Les ruines, ou Méditation sur les révolutions des empires. Le 25 septembre, le volume placé sur le bureau de l'Assemblée nationale, était déposé aux archives.

L'idée première de cet ouvrage avait été conçue dans le cabinet de Benjamin Franklin. L'auteur se met en scène sur les ruines de Palmyre ; et là il se livre à de profondes méditations sur la destruction de tant d'empires à qui leur puissance colossale semblait promettre une éternelle durée, et qui n'en ont pas moins obéi à cette loi de la nature qui veut que tout périsse.

extrait livre ruines volney. Pyramide anubis inondation lion dieux olympe.
Extrait de la p.374 de Ruines... dans lequel les pyramides représentent les dieux de l'olympe..

Ce livre, ainsi que le précédent, "Voyage en Syrie et en Égypte, pendant les années 1783, 1784 et 1785" (et le tome 2) publiés en 1787. (déjà mentionné plus haut) a éveillé l'intérêt du public pour l'orient et surtout pour l'égypte et ses pyramides.

Le livre "Ruines...." influence même le ministre des relations extérieures, Talleyrand qui incite le général Bonaparte à conduire la campagne d'Égypte de 1798 à 1801 !
(C'est le début de l'égyptomanie, bien que le rêve de conquête de l'égypte était déjà un projet plus ancien pour le gouvernement français. Talleyrand y pensait depuis avant la révolution, la proposition de conquête de l'égypte avait été faite à Louis XVI au début de son règne, et cette idée semble remonter à Louis XIV.)

Justement Volney est un proche de Bonaparte, ceci depuis sa rencontre avec lui en Corse.

Après le coup d'Etat du 18 brumaire qui a mis Napoléon à la tête de la France, Bonaparte imagine prendre Volney comme troisième Consul, puis comme ministre de l'Intérieur. Volney refuse, et se laissa seulement nommer sénateur, mais il reste le confident, l'ami, et même le médecin du Premier Consul.

En voyant la proximité entre Volney et les personnages influents de notre histoire, on peut imaginer ici l'influence morale et philosophique que Volney a pu avoir sur l'imaginaire des dirigeants Français qui créent un monde nouveau.

Volnay est mort en 1820, il repose au cimetière du Père-lachaise sous une pyramide !

tombe-Pere-Lachaise-Volney

Il existe plusieurs loges maçonniques qui portent le nom de Volney.

1792

1792 fin juin début de la Mesure du méridien entre Dunkerque et Barcelone par Méchain et Delambre. Les deux partent dans des direction opposée. Méchain pour Barcelone et Delambre pour Dunkerque. En novembre le gros de la mesure des angles est terminée jusqu'au pied des pyrénées. L'hiver est occupé à mesure les latitudes.

Le travail sera fini en 1798, si tout se passe bien pour Delambre, Méchain va réaliser 2 mesures avec des résultats différents sans en trouver l'erreur. Il va devenir dépressif, suicidaire et s'enferme dans un couvent abandonné jusqu'à ce que sa femme viennent le rechercher. Il va donc masquer cette erreur à son collègue et au public. Ce n'est qu'après sa mort que Delambre en vérifiant les carnets de Méchain va découvrir la vérité.

triangulation méridien dunkerque barcelone par delambre et méchain

1792 Une explication est publiée par la "Commission temporaire des poids & mesures républicains" sur le pourquoi du quart du méridien. Pourquoi un quart et pas une autre proportion. Il s'agit du document "Instruction sur les mesures déduites de la grandeur de la terre : uniformes pour toute la République, et sur les calculs relatifs a leur division décimale" p.13 à 16

Le document explique que le quart du méridien est un angle droit du "cercle" (en fait une ellipse, ce que le document précise aussi.) L'angle droit est un cas particulier d'angle qui permet de mesurer facilement tous les autres et de simplifier les calculs trigonométriques. Il est mentionné que les astronomes utilisent aussi ce quart pour leur calcul. Notamment car les tables de trigonométries avec des sinus sont basées sur le 1/4 du cercle. Le reste n'étant que répétition de ce même cadran.

"(...) ce qui les y a sur-tout déterminés, c’est que tous les calculs astronomiques et autres qui ont pour élémens des mesures d’angles, se rapportent à certaines lignes tracées dans le cercle qu’on appelé sinus , et dont la série se termine au quart de la circonférence ;"

ce qui les y a sur-tout déterminés, c’est que tous les calculs astronomiques et autres qui ont pour élémens des mesures d’angles, se rapportent à certaines lignes tracées dans le cercle qu’on appelé sinus , et dont la série se termine au quart de la circonférence

Justification de la base 10

En ce qui concerne la justification de la base 10, c'est plutôt "L'effet de l'instinct plutôt que de la réflexion", en expliquant que la plupart des civilisations dont on connait l'histoire utilisent de préférence la base 10, probablement à cause du nombre de doigts des humains !

Cette envie d'utiliser le système décimal partout va conduire à la création du grade, comme unité de mesure d'angle. L'angle droit si pratique décrit ci-dessus est associé à 100 grade. Ainsi un tour complet d'un cercle vaut 400 grade. Cette unité de mesure n'a jamais vraiment été utilisée, les degrés étant plus pratique car le nombre 360 a plus de diviseurs que le nombre 400, ce qui permet de faire correspondre des angles pratiques de la trigonométrie, comme 60° et 30°, à des nombres rond. (sin(30°) = 1/2).

Comme quoi, le même raisonnement peut valider le choix du 1/4 du méridien en mode décimal ou l'invalider pour d'autres unités.
(Il est à noter que depuis l'avènement des outils informatiques de gestion géographique, le degré décimal est souvent utilisé. Il s'agit de diviser en mode décimal les sous divisions du degré, donc la minute et la seconde sont remplacée. On a ainsi le meilleur des deux mondes )

La France est le meilleur endroit de mesure du 1/4 du méridien

Les révolutionnaires disent que sans le vouloir, le meilleur endroit pour la mesure du quart du méridien se trouve être la France, l'endroit où l'on peut mesurer une distance suffisante depuis un bord de mer jusqu'à un bord de mer et à des latitudes autour de la latitude moyenne de 45°.

Le postulat est fait que la terre est une ellipse, et donc qu'il est possible de mesurer cette valeur moyenne et d'ensuite l'extrapoler pour trouve le 1/4 du méridien. (Il s'avère que cette hypothèse de départ est fausse, la terre est un planétoïde avec des méridiens tous différents. Les savants de l'époque s'en rendrons compte grâce à l'erreur de mesure de Méchain quelques années plus tard.)

Eloge du pendule

Bien que la définition de la longueur du pendule qui bat la seconde a été rejetée. Il est précisé ici que c'est le meilleur moyen de retrouver la longueur du mètre !!
Le travail de mesure du degré de méridien ne doit être fait qu'une seul fois puis on enregistrera le nombre d'oscillations en 24h d'un pendule qui bat la seconde pour retrouver le mètre ! (sachant que la longueur du pendule est quasi de 1 mètre.. c'est étonnant d'avoir rejeté cette définition qui était proposée à l'origine dans le décret de Talleyrand pour ensuite y revenir de façon détournée !)

"Ainsi le pendule peut être regardé comme le dépositaire de l’unité de mesure , ou même comme un moyen de mesurer la terre" p.29

21 janvier 1793

Le roi Louis XVI est guillotiné.

7 mars 1793

L'espagne déclare la guerre à la France. C'est la guerre des pyrénées. Déjà que Méchain n'avait pas pu rentrer en France car il était alité depuis 6 mois suite à un accident, là on lui refuse son visa et il ne peut pas quitter l'Espagne.

Il se lance donc dans un projet de prolongement de ses mesures du méridien. Il veut atteindre l'ile de Cabrera dans la Baléares.

29 mai 1793

Une troisième commission détermine un mètre provisoire de 443,44 lignes basé sur les mesures faites en 1740 par Lacaille et Cassini de Thury.

Ce mètre provisoire est adopté dans un décrêt du 1er août.

21 décembre 1794

Méchain profite du solstice d'hiver pour mesurer l'angle d'inclinaison de l'axe de la Terre depuis la terrasse de son hôtel de Barcelone, la Fontana de Oro.

Il pousse la précision en utilisant 2 étoiles de plus que lors de ses mesures précédentes. En plus de l'inclinaison de la Terre, il obtient en bonus, la validation de ses résultats de mesures de la latitude à Montjuïc issue de la mesure de la hauteur de 6 étoiles : Polaris, Kokab, Thuban, Mizar, El Nef et Pollux.

Tout se passe bien avec les premières mesure. La localisation du château de Montjuïc se fait à 30 pieds près.

Mais, voilà que le résultat lié à Mizar donne une erreur de 4 secondes d'arc, soit ~400 pieds. C'est le drame !

Il passe 3 mois à refaire les mesures et calcul, puis après de longue négociation obtient le droit de faire une mesure depuis le château de Monjuïc (en pleine guerre), le dimanche 16 mars 1794.

Impossible de trouver la source de cette incohérence. Méchain devient dépressif. Il a déjà communiqué ses premières données. Il commence à masquer le fait qu'il existe une erreur.

Il ne reprendra que début de l'an 4 des mesures dans le sud de la France après être sorti d'Espagne en passant par l'Italie.

Panorama de Barcelone de puis le château de Monjuïc
Panorama de Barcelone de puis le château de Monjuïc

7 avril 1795

Le système métrique décimal complet (sauf la seconde) est adopté dans la loi.

10 juillet 1796

Gaspard Monge écrit à sa femme.

Bologne, le 22 messidor de l'an IV de la République

Nous avons encore à faire ici [Bologne] pour trois ou quatre jours ; nous sommes fort occupés de nos emballages qui contiennent des objets très précieux en tout genre. Indépendamment des beaux tableaux de Bologne, nous envoyons à Paris une donation manuscrite faite à l'église de Ravenne, sur papyrus en l'an 490, c'est-à-dire il y a 1306 ans,[beaucoup de manuscrits anciens et de premières éditions imprimées.] Je crois que la Bibliothèque nationale sera très contente de notre envoi.

Nos affaires terminées ici, nous nous rendrons à Florence où nous serons sans fonction et où nous attendrons que notre ambassadeur à Rome nous avertisse qu'il est temps de nous rendre dans cette capitale du monde chrétien. Je crois que nous y serons dans une quinzaine de jours.

Lettre de gaspard monge depuis bologne le 22 messidor de l'an 4, soit 10 juillet 1796

17 août 1796

Gaspard Monge écrit à son gendre

Rome, le 30 thermidor de l'an IV de la République

Mais l'abbaye de San Salvator à Bologne a une grande bibliothèque que personne ne fréquente, et dont les moines eux-mêmes ne connaissent que la porte. Nous y avons trouvé 120 volumes imprimés avant l'année l500, et environ 500 manuscrits antérieurs à l'époque de l'invention de l'imprimerie, et nous avons pris tout cela parce que cela sera utile à Paris, et que cela ne l'était plus depuis bien longtemps à Bologne.

Nous avons trouvé aussi à Bologne trois donations faites en 490 et 491 à l'église de Ravenne, écrites sur papyrus ; nous les avons prises; et, depuis que nous sommes ici, nous avons reconnu que la fameuse Chambre des papyrus du Vatican ne renferme qu'une douzaine de semblables donations et rien d'autre. Ainsi les papyrus que nous avons eus de Bologne, le livre de Joseph que nous avons eu à Milan et quelques-unes des donations du Vatican que nous emporterons, rendront la bibliothèque de Paris plus riche en ce genre que l'on ne l'est à Rome, sans compter ce qu'elle avait déjà en ce genre et qui était très considérable.

23 août 1796

Lettre de Gaspard Monge à sa femme

Rome, le 6 fructidor de l'an IV de la République

Nous sommes toujours occupés à former notre liste de manuscrits. Rien ne presse à cet égard, parce que quand un convoi sera prêt à partir, nous donnerons cette liste et en trois jours les ballots seront faits pour être chargés sur les voitures. Si le catalogue de la Bibliothèque du Vatican existait, il suffirait de le compulser. Mais il n'existe que celui des livres hébreux et celui des livres syriaques. Ces jours derniers, nous avons visité tous les livres arabes et nous avons eu soin de ne marquer que ceux qui ne sont pas dans la Bibliothèque de Paris.

Il s'en faut de beaucoup que nous connaissions la Bibliothèque du Vatican, mais à en juger par ce qui nous est déjà passé par les mains, je t'assure que sa célébrité tomberait considérablement si le catalogue en était fait. Elle ne renferme que des manuscrits et lorsque nous l'aurons écrémée en envoyant à Paris tous les objets célèbres et connus de réputation, je t'assure qu'il sera encore plus nécessaire que jamais de tenir ce catalogue secret.

panorama rome le vatican musee place st-pierre obelisque cadran solaire
Panorama du Vatican avec sa bibliothèque à gauche et la place st-Pierre et sont cadran solaire

3 juin 1797

Gaspard Monge écrit à sa femme

Rome, le 15 prairial de l'an V de la République

L'autre jour, après avoir mis à part dans la bibliothèque du Vatican quelques manuscrits anciens relatifs à l'histoire, et qui ne pouvaient avoir quelque mérite que dans le cas où ils n'auraient pas été imprimés, j'allai, avec l'abbé qui travaille avec moi, à la bibliothèque de la Minerve pour voir s'ils étaient publiés. Après avoir parcouru les catalogues, il nous restait à vérifier quelque chose dans quelques ouvrages au nombre desquels se trouvaient les œuvres de Galilée, célèbre Florentin qui s'avisa de découvrir que la Terre tournait, qui eut la bonhomie de le dire, qui fut emprisonné pour cela, et qui fut obligé de se rétracter pour avoir la liberté, ce qui, comme il le dit lui-même, n'empêcherait pas la Terre de tourner.

Le bibliothécaire, Jacobin de religion, en nous apportant la charge de livres que nous avions demandés, et en nous montrant les volumes de Galilée, nous dit ceux-ci sont défendus. Mon abbé, homme d'esprit, très honnête et qui vraisemblablement n'était pas comme lui, dit "J'ai la permission de lire tous les livres, quant à Mr, en me montrant, il l'a par lui-même". Cette assertion donnée de preuve ne faisait pas grand effet sur le suppôt de l'inquisition qui prétendait qu'il fallait aller parler au supérieur; mais en tournant mon chapeau de manière à rendre visible ma cocarde, je levai toute difficulté ; et, après avoir jeté un coup d'œil expressif à mon pauvre abbé, nous fîmes notre opération.

Pendant que nous nous en occupions, un jeune homme vint se placer à côté de nous, et un moment après on vint lui apporter les livres qu'il avait demandés. Je fus surpris de voir que c'était l'Astronomie de Lalande 1° parce que les sciences positives ne font pas grande fortune à Rome ; 2° parce que l'on ne défend pas le livre de Lalande qu'on lit tous les jours et qui suppose d'un bout à l'autre que la Terre tourne, tandis qu'on défend encore les livres du pauvre Galilée que personne ne lit plus. Mais dans le régime de l'erreur, il faut avoir bien de l'esprit pour être conséquent et pour faire tout cadrer; et depuis bien longtemps il n'y en a plus guère dans ce pays-ci ; et je crois, dieu me pardonne que, sans nos élégantes et nos incroyables, la farce finirait bientôt.

1798

L'expédition de mesure du Méridien est terminée.

Lettre delambre à méchain à propos d'erreur à cause de la figure de la terre.
Lettre du 5 janvier 1797 dans laquelle Delambre écrit à Méchain: "Ne vous effrayez pas d'une petite différence ; elle pourrait venir de la figure de la Terre"

19 mai 1798

Les soldats et 167 scientifiques de la campagne d'égypte quittent le port de Toulon avec Napoléon pour se rendre en Egypte où ils arriverons en juillet.

C'est Gaspard Monge qui a sélectionné en secret pendant les 2 mois précédents au moins 150 des scientifiques présents. Avec Napoléon et ses généraux, c'est le seul membre de l'expédition à connaitre la véritable destination.

Parmis les scientifiques embarqués, il y a l'astronome Jérôme Méchain. Le fils de l'astronome Pierre Méchain qui mesure le méridien jusqu'à Barcelone.

J'ai découvert ceci lors de ma visite au temple de Philae en égypte, sur un des murs il était gravé "Méchain". Ça m'a questionné.

Il est rentré en octobre 1801, plus tôt que les autres, suite à une négociation avec les anglais, et pour pouvoir ramener les résultats des travaux scientifiques menés.

Au passage, vu que l'on parle de la famille Méchain, je profite de l'occasion pour dire que cette famille vient de Laon. Ville où ironiquement, la cathédrale contient une pierre angulaire qui marque le mètre.... Pourquoi aller si loin quand on a tout chez soi !

1799

La fixation provisoire de la longueur du mètre du 1er août 1793 (18 germinal 3) est révoquée et la version définitive est adoptée le 19 frimaire an 8 (10 décembre 1799).
Elle vaut 3 pieds 11 lignes 296/1000.
(443,296 lignes)

Delambre propose d'arrondir à 443,3 lignes, mais la commission veut exploiter pleinement la précision proposée par l'ingénieur Étienne Lenoir qui réalise l'étalon.

Le 22 juin, le mètre standard sous forme d'étalon en platine est officiellement présenté.

La loi du 19 Frimaire, an VIII (10 décembre 1799) précise : « le mètre et le kilogramme en platine déposés le 4 Messidor dernier au Corps législatif par l'Institut national des Sciences et des Arts sont les étalons définitifs des mesures de longueur et de poids dans toute la République… ».

Ce mètre-étalon, connu aujourd'hui sous le nom de Mètre des Archives. Il sera LA référence officielle jusqu'en 1889.

On sait que par rapport à la mesure réelle du 1/4 du méridien cette version définitive du mètre est trop courte de 0,197 mm. (Ce qui fait que le méridien fait 40 007, 864 km au lieu de 40 000 km tout rond.) Mais cette erreur se perpétue de définition en définition.

Autre erreur de taille, le fondement même de la méthode ne fonctionne pas !
L'idée de mesurer un segement de méridien (celui entre Dunkerque et Barcelone) afin d'extrapoler la mesure pour déterminer la distance du quart du méridien ne fonctionne pas, car la Terre n'est PAS une ellipsoïde de révolution, mais un planétoïde où tous les méridiens sont différents.
(regarde une orange ou une pomme.. généralement elle est pas parfaite.)

Les savants qui ont mis a point cette méthode de mesure ont pris pour hypothèse que la Terre est une ellipsoïde de révolution. Mais ils ont bien précisés que c'est une hypothèse.

Déjà à ce moment là, le taux d'aplatissement a du être mesuré. C'est ainsi que pour déterminer le mètre définitif, les données de l'expédition géodésiques françaises à l'équateur et en Laponie ont été utilisées pour déterminer l'aplatissement de la Terre.

Un aplatissement de 1/334 a été choisi en combinant l'arc du Pérou mesuré par La Condamine et les données de la méridienne de Delambre et Méchain, avec pour point central le panthéon à Paris.

Donc on se retrouve avec un calcul hybride, la commission se retrouvant avec 2 aplatissements possibles 1/150 mesuré par Méchain et Delambre et 1/334 mesuré par La Condamine !! .. donc ne comprenant pas trop la mesure de Méchain et Delambre seul leur longueur a été retenue, mais pas leur aplatissement !! (cohérent tout ça !!!)

De nos jours le système WGS84 utilise un aplatissement de 1/298.257223563.

Donc de là, il faut bien comprendre que chaque méridien est est unique. La Terre est un géoïde et pas une forme régulière... il suffit de regarder une orange pour avoir une bonne analogie !

Donc les gars ont dit qu'ils avaient vraiment mesuré la Terre et de façon très précise. Mais la réalité, c'est que Méchain avait fait une erreur due à l'usure de son cercle répétiteur de Borda. Donc une cohérence à chaque mesure, mais une différence si on refait la mesure plus tard avec une autre usure ! L'axe vertical étant altéré. C'est l'astronome Jean-Nicolas Nicollet qui a élucidé l'erreur en 1828. Il a pu la corrigé grâce nombreuses mesures faites par Méchain au nord et au sud du zénith, permettant de se compenser.

Méchain avait choisi une des deux valeurs, et malheureusement la moins précise. Delambre trouvait que tout ce travail était inutile pour juste déterminer un étalon, mais il a bien aimé faire le travail. Du coup il a proposé une précision moindre, avec un nombre simple de ligne à retenir 443,3 ... 2* 4 et 2 * 3.... mais la commission voulait briller en montrant une précision... (absurde)....

Puis il y a ce mélange de 2 sources de mesures, une pour la distance et une pour l'aplatissement !

De là on extrapole, de 9.5° pour 90° .... alors qu'on soupçonne que l'extrapolation est un non sens vu que la Terre n'est pas une ellipsoïde, mais un géoïde irrégulier avec des méridien tous uniques !

Le coup de la mesure universelle en prend un coup.... c'est donc un mètre français !!

Et de là on voit que la fable de la précision est une fable... et pas la réalité.

Je me questionnait de savoir si le mètre n'aurait pas été repris d'ailleurs vu les difficultés de réaliser une telle mesure. Mais je crois bien que non. Nous utilisons bien ce mètre imparfait de ~2 dixième de mm .... ce qui ne change pas grand chose !

1804

Méchain meurt de la malaria à Barcelone en essayant de vérifier ses mesures.

Delambre fait l'éloge de son collègue Méchain dans les mémoires de l'académie des sciences en 1805.

1806

L'erreur de Méchain

Delambre récupère les carnets de notes de Méchain. On sait par les recherches récentes de Ken Alder que Delambre avait découvert l'histoire de l'"erreur" de calcul de latitude faites par Méchain. Méchain a tenté de masquer ses mesures incohérentes, mais n'a jamais trouvé l'explication. Ça l'a rendu malade et on peu même le dire, ça l'a tué..

On retrouve l'explication dans un livre de Ken Alder qui s'appelle "Mesurer le monde".

Delambre a écrit dans le carnet de Méchain qu'il a choisi une des deux versions de la mesure, mais qu'il n'en informerai pas le public, car il n'a pas besoin de le savoir.

La pensée la derrière est que le système métrique doit s'imposer et il ne faut pas ajouter de flou, au risque de voir ce système remis en cause. Il vaut mieux une bonne histoire qui raconte une merveilleuse expédition scientifique pleine de rebondissement, mais que malgré tout l'effort de la brillante communauté scientifique française a réussi à mesurer le 1/4 du méridien et en tirer une unité de mesure universelle pour le bien de l'harmonie des peuples... Bref.. l'histoire qu'on nous raconte toujours et dont on a fait des films.

En fait quand Méchain cherchait l'erreur dans ses mesures des étoiles. Delambre a vu là une remise en cause du postulat que la Terre est une ellipsoïde, mais que c'est une géoïde. Donc cette erreur, n'en est pas une. C'est une remise en question du modèle théorique et donc une occasion de grandir d'aller vers un meilleur modèle.

La vérité était encore ailleurs. En 1828, Jean-Nicolas Nicollet découvrira que c'est l'usure du cercle répétiteur de Borda qui est la cause d'une déviation constante de l'axe du zénith. Il le prouvera en compensant les déviations relevées par Méchain au nord et au sud. On découvre ainsi que Méchain avait une précision redoutable de 40 pieds pour la mesure de la latitude. Mais sa méthode de calcul ne distiguait pas la précision de l'exactitude.

Ken Alder dans son livre "Mesurer le Monde" insiste sur les bénéfices de cette "erreur" qui n'en est pas une et qui fera évoluer les méthodes de mesures et la statistique, grâce aux mathématiciens Legendre et Gauss qui ont découvert simultanément la méthode des moindres carrés. On peut ainsi distinguer précision et exactitude grâce à un modèle théorique.

Une ancienne civilisation connaissait déjà le mètre ?

Une fois tout ses travaux terminé Delambre publie une livre qui résume la mesure du méridien et la création du mètre:

Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone

Dans ce livre il fait l'état des lieux des connaissances et on a des phrases étranges. Il cite Paucton et remet en cause ses calculs grâces aux mesures de la pyramide faites pendant la campagnes d'égypte.

delambre 1806 mesure meridien-p12

Delambre semble au courant de l'hypothèse que le mètre était déjà utilisé par une ancienne civilisation avant son invention officielle !

Mais pour lui, il se fiche bien de l'origine du mètre. Tant que cette unité de mesure existe et est utilisée.

delambre 1806 mesure meridien-p13 metre ancienne civilisation prehistorique

1809

Publication de la première édition de "Description de l'égypte", avec le compte rendu scientifique de la campgne d'égypte. Cette édition est dirigée par Edmée Jomard.

1817

Edmée Jomard publie son livre "Mémoire sur le système métrique des anciens égyptiens: contenant des recherches sur leurs connoissances géométriques et sur les mesures des autres peuples de l'antiquité " publiée en 1817...... "

La citation de M. Gosselin mise en avant est intéressante, car il y est dit des vérités qui semblent oubliées de nos jours:

"On se convaincra, d'après ces recherches, que les mesures itinétaires des anciens sont plus exactes qu'on ne le croit. En les comparant au plan de la terre, tel qu'il nous est connu, il est souvent difficile, quelques fois même impossible, de décider si les erreurs que l'on croit apercevoir dans ces itinérairess, doivent être rejetées plutôt sur le compte des anciens que sur l'imperfection de nos connoissances actuelles."
Recherches sur la géographie systématiques et positive des anciens, par M. Gossellin,

Jomard explique directement dans le début de son livre, que l'orient et particulièrement l'égypte a attiré tous les gens intéressés par la recherche d'une unité de mesure naturelle.

C'est en effet, ce que l'on constate ici, avec les exemples du calife Al-Mamoun, de Graves, de Burratini, de Newton et de Paucton. Certains sont allés sur place et d'autres non. Jomard précise qu'il a de la chance d'être sur place et avec du bon matériel de mesure. Il n'est pas ainsi obligé de se fier aux estimations des mesures des voyageurs.

Le périmètre de la pyramide de Khéops est ajusté sur la longueur du méridien

p284:

"Mais le périmètre de la grande pyramide de Memphis avoit 30 secondes du degré propre à l''Egypte, autrement cinq stades compris chacun 600 fois dans ce même degré: l'apothème avoit un stade; le côté, 500."

"Ainsi le côté de la pyramide répété 480 fois, ou le périmètre pris 120 fois, faisoit le degré terrestre. Multiplié 8 fois, ce même côté faisoit une minute. La mesure d'une seconde étoit conservée dans la 30è partie du périmètre. Le schoene, grande mesure itinéaire, 10è partie du degré, étoit égal à 48 fois le côté de la pyramide, ou 12 fois son périmètre, etc, etc,"

J'ai vérifié, ça marche très bien. La longueur du degré du méridien propre à l'égypte (30° de latitude) mesure 110852.4248 m. Si on divise cette longueur par 120 on obtient 923.8m pour le périmètre de la pyramide, soit 230.942 m pour un côté. Ce qui à une coudée près correspond aux 440 coudées officiellement admises. (mais avec de grandes variations suivants les auteurs !) La différence s'explique probablement à savoir si l'on prend en compte le socle de la pyramide où non !

1821

Publication de la seconde édition de "Description d'Egypte".

Edmée Jomard y dit en p.5:

Il est donc naturel de penser que l'étude des monnumens laissés par les Égyptiens y fera retrouver leur système métrique: c'est là la fin essentielle de notre travail, notre but n'étant pas de donner un tableau de toutes les mesures appartenant aux divers peuples et cités par les auteurs.

Outre que cette recherche serait hors du plan de l'ouvrage et au-dessus de nos forces, elle se trouvera faite en partie, pour ainsi dire, par la seule détermination des mesures égyptiennes. Celles-ci, en effet ont donné naissance à beaucoup d'autres, telles, par exemple, les mesures hébraïque, ainsi que l'atteste positivement S. Épiphane.

Que veut vraiment dire Jomard par ces propos ?

Est-ce qu'il dit réellement que son mandat, la "fin essentielle de notre travail" est de retrouver "le systèmes métrique" des anciens Égyptiens ?

Où est ce qu'il s'est donné lui même cette mission d'étudier le système de mesure des anciens égyptiens ?

La suite de la saga du mètre au prochain épisode !

Maintenant que nous avons les faits et la chronologie, il sera temps de relier tout ça, d'y mettre de l'ordre et d'y retrouver un sens !

Les lecteurs attentifs pourrons déjà y voir les indices que j'ai laissé dans cette chronologie de l'invention du mètre.

A bientôt, garde l'esprit ouvert !

🝆

Voir aussi

Voici d'autres chronologies et documents intéressants à propos de l'histoire du mètre et par corollaire, de l'histoire de la mesure de la Terre.

Qu’est ce que la géométrie sacrée ? – Introduction

La plupart des gens ont fait de la "géométrie" à l'école, mais qu'est-ce que la "géométrie sacrée" ?

La langue des oiseaux nous donne directement une réponse: la géométrie: Ça crée.

Bien qu'incomplète, je trouve que c'est une bonne définition. Car oui, la géométrie permet de créer.

C'est même la base de l'art des bâtisseurs, et pas n'importe lesquels. On parle là des bâtisseurs des monuments les plus connus, les plus emblématiques, les plus beaux, et aussi les plus mystérieux de cette planète!

En effet, la géométrie sacrée est omniprésente chez les bâtisseurs de cathédrales, mais aussi chez les bâtisseurs de pyramides et même chez les bâtisseurs de mégalithes.

La géométrie sacrée est probablement une des sciences les plus anciennes qui existe.

Dans cet article nous allons voir les bases de la géométrie sacrée, nous allons voir de quoi te faire l'oeil à une autre manière de voir.

Ainsi tu pourras regarder sous un oeil neuf des monuments que tu as déjà certainement vus, mais dont tu n'avais pas pris l'ampleur de la magie de leur construction !

pyramide gizeh panorama dromadaire

Introduction à la Géométrie sacrée en vidéo

Le contenu de cet article est également disponible en vidéo. Les contenus se recoupent, mais parfois il y a des anecdotes que l'on ne voit quand dans une seule version.

Tout est question de proportion

Pour bien entrer dans le sujet de la géométrie sacrée. Il faut se remettre dans le contexte ancien. Le mode de pensée n'est pas le même que de nos jours.

La manière d'aborder les mathématiques dans l'antiquité et de nos jours est très différente.

De nos jours on aime bien utiliser les nombres à virgule.

Si je prend un passant au hasard dans la rue et que je lui demande ce qu'est le nombre PI, π....

..... majoritairement il va me répondre:

  • C'est 3,1415.....

OK, c'est juste, c'est la représentation du nombre π sous forme de nombre à virgule. Mais quel est le sens du nombre π ? Qu'est-ce qu'il représente ?

Si la personne a fait un peu quelques études, elle va me répondre qu'il y a un lien avec le cercle.... mais la réponse complète est rare.

Alors pour te "culturer" un peu, le nombre π représente le rapport qu'il y a entre la circonférence d'un cercle et son diamètre. Ce rapport est toujours le même peu importe la taille du cercle. On a donc là une proportion, juste une proportion peu importe la taille, la mesure de l'objet.

Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π
Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π

Ainsi, cet exemple montre bien qu'il est possible de manipuler des objets mathématiques juste avec des proportions.

C'est plus tard, dans un second temps que l'on va fixer la proportion à une échelle précise en se basant sur une grandeur physique réelle.

La taille de la Terre par exemple... d'où le fait que l'on parle de Geo-métrie, mot qui signifie mesure de la Terre.

On verra plus tard, que les unités de mesures utilisées en géométrie sacrée sont tout à fait étonnantes.... On va parler de pieds, de coudées, mais aussi du mètre.

Là on verra que l'histoire officielle ne semble pas correspondre avec l'observation des monuments anciens !!

Il y a un bug dans la matrice !!!

Une des explications possible, est que des sociétés secrètes ne nous ont pas tout dit.... Je pense particulièrement à des sociétés qui ont un compas et une équerre comme emblème.....

Des sociétés chez qui la Géométrie semble quelques chose d'important, et même de sacré...

équerre et compas emblème franc maçon G

Sans calculatrice il est possible d'être plus précis

Tu peux également abandonner ta calculatrice, car en géométrie sacrée, on se fiche bien de savoir que π se représente en notation décimale à virgule par 3,1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811.... et encore des milliards de décimales...

Cette représentation est très lourde, toujours incomplète et donc jamais exacte. Alors qu'il suffit d'une lettre pour tout dire: π

En géométrie sacrée, il faut penser comme les anciens. Si l'on se met dans ce mode de pensée, il y a des correspondances qui sautent aux yeux, alors que si on reste dans le mode notation décimale à virgule, on passe à côté.

Voici encore un exemple d'un sondage dans la rue. Si je prends quelqu'un au hasard et que je lui demande ce qu'est la racine carré de 2, soit la notation: √2 .....

.... et bien là j'ai souvent un grand silence. Ou encore, la personne sort son smartphone 📱et tente de trouver le symbole √ sur sa calculette... et c'est le drame... sauf si elle connait l'astuce de passer son iPhone en mode panoramique pour découvrir des touches supplémentaires...

... et là on me dit fièrement √2 = 1.414213562373095048801688724209...

OK, mais comme avec le nombre π ci-dessus, je demande: ... et ça représente quoi √2 , ça a quel sens ?

Bref, tu l'auras compris. Notre société ne fonctionne pas du tout de la même manière. On a un certain savoir de type bourrage de crâne, mais quand à comprendre le fondement des choses. C'est pas terrible.

Donc, la racine de 2 peut tout simplement se comprendre comme étant la diagonale d'un carré de 1 de côté. (toujours en proportion, sans échelle particulière)

racine-de-2-diagonale-carre-Construction_of_square_root_of_2_on_the_line_number
La racine carrée de 2 est tout simplement la diagonale d'un carré de 1 de côté.

On verra ci-dessous, qu'en géométrie sacrée, les diagonales de carrés et de rectangles sont très souvent utilisées. Notamment pour représenter la notion d'angle.

La plus ancienne représentation que l'on a de la connaissance mathématique de la racine carrée de 2 date de ~ -1900. Il s'agit de la tablette d'argile YBC 7289.

Tablette d'argile babylonienne YBC 7289 montrant la √2
Tablette d'argile babylonienne montrant la √2

Personnellement, depuis que je m'intéresse à la géométrie sacrée, je vois des constructions, notamment mégalithiques, qui mettent en oeuvre des connaissances mathématiques du même type et ceci dans un temps bien plus ancien !

Depuis quelques années, Norman Wildberger, un Dr en math, professeur dans une université australienne développe une nouvelle forme de trigonométrie dite rationnelle, la trigonométrie de Wildberger.

Cette trigonométrie est beaucoup plus simple à utiliser et plus efficace pour faire des calculs par ordinateur car elle ne manipule pas de nombres réels à virgule flottante. On retrouve donc là une approche similaire à celle des anciens. Et on se dit que c'était très intelligent !!

On redécouvre de plus en plus, que notre mode de pensée actuel nous fait passer à côté d'autre chose. On redécouvre que cette ancienne manière de penser qu'on voit souvent comme primitive est en fait souvent plus évoluée qu'on le crois au premier abord.... et même plus évolué que ce qu'on fait actuellement !

Plein de nombres constructibles irrationnels et même transcendants!

Alors que de nos jours on aime bien utiliser des nombres un peu ronds.... 1 mètre, 2 mètres. ou encore, 1,5m ou à la limite 2,60 ou 3,9.... les anciens ont l'art d'utiliser des nombres spéciaux qui sont difficilement représentables avec la notation décimale à virgule.

Donc c'est normal qu'on ai un peu de peine à se comprendre !

🤷🏼‍♀️

Des nombres constructibles

On a déjà vu ci-dessus des nombres comme π ou √2. Mais on verra que c'est pas fini. Il y a encore une foule d'autres racines... notamment √3 et √5. Ceci tout simplement car c'est ainsi qu'on calcule la diagonale d'un rectangle. (ci-dessous représentée par la lettre c)

On utilise le fameux théorème de Pythagore. (en fait ce théorème était connu bien avant la naissance de Pythagore... ce dernier l'a juste rapporté comme souvenir d'un voyage en égypte...)

\[c = {\sqrt{a^2+b^2} }\]

Les nombres √2, mais aussi √3, sont des nombres dit irrationnels, car on ne peut pas les exprimer par un ratio. (une fraction simple)

Mais comme on l'a vu par la géométrie, ce sont des diagonales. C'est simple à manipuler. Ce sont des nombres dit Constructibles. Car on peut les construire à la règle et au compas.

Des nombres non constructibles à la règle et au compas

Par contre pour le nombre π, c'est aussi un nombre irrationnel, mais en plus il est transcendant !
(comme son copain le nombre e)

Ça signifie que π n'est la solution d'aucune équation polynomiale. Donc avec ça on est coincé. Il n'est pas possible de dessiner le nombre π.
(Donc sur une ligne droite, sans le dérouler comme c'est fait dans l'animation en début de page.)

Pour dessiner π il y a des méthodes d'approximation, mais ça reste une approximation. C'est la cas par exemple de la méthode de Kochanski.

Le problème de la non-constructibilité de π, c'est ce qui empêche de résoudre le problème de la quadrature du cercle. Un problème qui a occupé les mathématiciens pendant des millénaires.

L'idée de base c'est de construire un carré qui a la même aire (surface) qu'un cercle donné.

quadrature du cercle Le carré de côté √π a la même surface que le cercle de rayon 1
Le carré de côté √π a la même surface que le cercle de rayon 1

Pour construire ce carré, il nous faut trouver la √π .... et là ça coince. Impossible à résoudre avec seulement un compas et une règle.

Donc depuis la fin du 19ème siècle on sait que c'est peine perdue de trouve une solution à ce problème, à cause de la transcendance de π.

D'où l'expression "Chercher à résoudre la quadrature du cercle"...

.... et pourtant !

La grande pyramide de Gizeh une solution au problème de la quadrature du cercle.

De mon observation de la géométrie sacrée et des monuments anciens, je vois que le problème de la quadrature du cercle a été résolu. Du moins, ça en est une excellente approximation.

Cette solution c'est la grande pyramide de Gizeh. La géométrie de cette pyramide nous montre une base carré qui a pour origine un cercle qui sert à construire la hauteur de la pyramide.

On reviendra sur la géométrie de la grande pyramide dans un article dédié car c'est là l'emblème même de la géométrie sacrée. Il y a tellement de chose à dire sur ce monument incroyable !

martouf en egypte a gizeh pyramide

Le nombre d'or, le cœur de la géométrie sacrée

Ici j'aimerai juste souligner que cette prouesse d'avoir matérialisé en si imposant la solution de la quadrature du cercle tient aux propriétés d'un nombre que je n'ai pas encore évoqué ici, mais qui est le cœur de la géométrie sacrée. Il s'agit du nombre d'or.

On l'écrit avec la lettre phi: φ

Il y a tellement de choses à dire sur le nombre d'or, ou plutôt la proportion dorée, vu qu'on a dit que tout est proportion, que j'avais déjà écrit un article pour montrer tous les domaines dans lesquels le nombre d'or est la structure sous-jacente.

On a de la chance, le nombre d'or est un nombre constructible. Il vaut:

\[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\]
nombre d'or en ligne

Trois points alignés, déterminant deux segments forment une section dorée (un rapport égal à Phi), s’il y a de la petite partie à la grande, le même rapport que de la grande au tout.

\[{a+b \over a} = {a \over b} \]

Le nombre d’or est le seul rapport qui met en résonance la partie avec le tout. On peut donc le voir comme étant une résonance (fractale) entre la créature et son créateur.

C’est pour cette raison que ce rapport est souvent appelé: La divine proportion.

Dans le cas de la quadrature du cercle, l'astuce utilisée dans la construction de la grande pyramide de Gizeh a été de remplacer un expression de π inconstructible par une expression approximative de composée de φ qui elle est constructible:

\[{4 \over π} ≈ {\sqrt{φ}} \]
Quadrature du cercle solution geometrie sacree pi racine nombre or

C'est peut être beaucoup d'informations d'un coup. On verra ci-dessous d'où viennent ces traits de construction. Ces formes, ces diagonales et tout ces nombres remarquables que l'on retrouve tout le temps en géométrie sacrée.

A force de les voir on commence à les savoir par cœur et être capable de faire le lien entre une proportion géométrique, son expression mathématique algébrique et sa notation numérique.

Valeurs numériques de nombres courants en géométrie sacrée

Afin de faire le lien entre les anciens et nous, voici les nombres les plus couramment utilisés en géométrie sacrée en expression algébrique et dans leur équivalent en notation numérique:

\[φ ≈ 1.61803398875 \] \[ {1 \over φ} ≈ 0.61803398875 \] \[ {φ^2 } ≈ 2.61803398875 \] \[ √5 ≈ 2.2360679775 \] \[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\] \[{1 \over φ} = {2 \over {1 + \sqrt{5}}} ≈ 0.61803398875\] \[e ≈ 2.71828182846\] \[e ≈ {φ^2 } + {1 \over 10} = 2.71803398875 \] \[√φ ≈ 1.27201964951 \] \[{4 \over π} ≈ 1.27323954474 \] \[ √φ ≈ {4 \over π} \] \[√3 ≈ 1.7320508075688772935\] \[√2 ≈ 1.41421356237\] \[ \cos{π \over 6} = {\sqrt{3} \over 2} ≈ 0.86602540378 \] \[ π ≈ 3.141592653589793 \] \[ {π -φ^2} ≈ 0.52355866484 \] \[ {π \over 6} ≈ 0.5235987756 \] \[ {φ^2 \over 5} ≈ 0.52360679775 \] \[ {5 \over 6 }π ≈ 2.61799387799 \] \[ {φ^2} ≈ 2.61803398875 \] \[ {1+2+ \sqrt{5} \over 10} ≈ 0.52360679775 \]

L'essentiel des nombres à retenir

Le nombre d'or

φ = le nombre d'or = 1.61803398875...
Mais aussi ses déclinaisons, comme son inverse qui = 0.61803398875... (1 de moins) et son carré φ^2 = 2.61803398875... (1 de plus)

Là autour, il y a plein d'approximations très proches faites à base du nombre π. Comme 5/6 π ≈ 2,61799387799...

C'est très étonnant que ces nombres si spéciaux puissent avoir des liens d'approximation si serrés.

Mathématiquement ces liens sont des approximations et pas des valeurs exactes. Il y a une page wikipedia qui les recense comme des coïncidences mathématiques.

Dans une réalisation architecturale, vu que l'on est pas dans le monde idéal des mathématiques, mais dans un monde où les dimensions ont une marge d'erreur, dans un monde où la précision n'est pas infinie. Dans ce cas, que l'on utilise la valeur exacte où une approximation, le bâtiment construit sera le même.

La géométrie sacrée étant principalement utilisée pour créer des bâtiments, certaines personnes n'hésitent pas à faire des raccourcis et dire que des approximations sont des égalités....

....Puis les puristes des maths leur sautent à la gorge.. et on voit des combats. Il y a de trolls qui polluent les espaces de commentaires sur le net en débats stériles de savoir si ce sont des approximations ou des valeurs réelles.

Pour cette raison dans cet article, je tente de bien distinguer les approximations des valeurs réelles mathématiques.

Cathédrale Notre Dame Paris polaroid structure H

La coudée royale égyptienne

Il existe deux définitions mathématiques simple de la coudée royale égyptienne:

0,523606... mètre = φ^2/5 mètre
1/10 du périmètre du triangle des bâtisseurs en mètre (triangle rectangle don l'hypoténuse est la diagonale d'un double carré.)
0,523598... mètre = π/6 mètre
1/6 de la circonférence d'un cercle de 1m de diamètre

triangle des bâtisseurs origine coudée royale égytienne
fleur de vie origine coudee royale egyptiennen

Il est à noter que la coudée royale égyptienne est la même que la coudée utilisée par les bâtisseurs de cathédrale dans le système de "quine des bâtisseurs" (aussi appelé parfois "pige des bâtisseurs" et qui sert à construire des outils comme la "canne des bâtisseurs")

Quine des bâtisseurs de cathédrale un système de mesure imbriqué fractalement avec un rapport du nombre d'or. On le voit bien dans un pentagramme.

Dans ce cas, je viens d'introduire la notion d'unité de mesure. Soit un nombre dans une proportion pure, mais qui est lié à une dimension physique concrète.

Il y a de nombreuses relations mathématiques qui peuvent mener à la définition de la coudée royale. Tout ceci fait encore largement débat. Je n'entrerai pas dans plus de détail dans cet article introductif déjà bien long !

Je n'irai pas non plus ici beaucoup plus loin la notion d'unité de mesure ancienne. C'est un vaste sujet qui méritera un articles complet. (coudée royale, pied, yard mégalithique, pied romain, coudée de Nippur, origine du mètre.. etc..)

coudee-royale-egyptienne-musee-saqqarah

Cascade des racines carrées

Maintenant que les bases sont posées. Maintenant que tu as eu l'occasion de comprendre que les anciens avaient un rapport aux mathématiques très différent de ce qui se fait actuellement. On va pouvoir entrer dans le vif du sujet.

Voici la construction de l'essentiel des nombres dont on a besoin et ceci juste à partir d'un carré de 1 de côté. (toujours sans dimension, juste une proportion.)

C'est une cascade de diagonale. On commence par dessiner le carré de 1 de côté. Sa diagonale vaut √2.

Puis on reporte cette diagonale pour créer un rectangle avec un côté qui vaut √2 et l'autre qui vaut toujours 1. La diagonale de ce rectangle vaut √3.

Puis on procède de la même manière, on reporte à nouveau la diagonale de ce rectangle pour obtenir un nouveau rectangle et on obtient une diagonale qui vaut √4 = 2.

Et là, c'est magique. A partir d'un seul carré, on en a maintenant deux !

geometrie-sacrée geogebra-cascade-racine-diagonale-moyen-martouf

Le double carré, le bi-carré est une forme très importante de la géométrie sacrée. C'est depuis cette forme que l'on peut générer toute une géométrie liées à φ , le nombre d'or. Ceci car la diagonale d'un double carré (en rouge) vaut √5.

Et il se trouve que √5 c'est la somme du nombre d'or et de son inverse !

\[ {1 \over φ} + φ = \sqrt{5} \]

J'ai mis un point sur la diagonale rouge pour montrer la différence ente φ et 1/φ.

On va regarder ça en détail.

Le double carré, la base d'une géométrie du nombre d'or

On a vu ci dessus que le nombre d'or vaut:

\[φ = {1 + \sqrt{5} \over 2} = {1 \over 2} +{\sqrt{5} \over 2} ≈ 1.61803398875\]

On va observer à quoi ça correspond en terme de géométrie.

double carré ou bi-carré dans la géométrie sacrée, base de la génération du nombre d'or

Si l'on commence sur le point en bas à droite du double carré, on peut obtenir un segment vertical qui fait la moitié du côté, soit 1/2.

Depuis là, on ajoute le segment vert clair. Soit la diagonale d'un rectangle 1/2 et 1. Ce qui revient à la moitié de la diagonale du bi-carré. Soit √5/2.

On voit que ceci correspond tout à fait à l'équation qui nous donne la valeur de φ. Voilà. On a généré la longueur du nombre d'or.

C'est grâce à cette longueur que j'ai pu placer le point rouge qui coupe la diagonale √5 avec 1/φ d'un côté et φ de l'autre.

Ensuite, au centre il y a une droite verticale orangée. Je l'ai générée en faisant croiser la longueur de φ depuis le coin en bas à droite, avec le prolongement du côté commun aux deux carrés du bi-carré.

Voilà, on a ainsi généré un segment de longueur √φ.
(Petit rappel, chaque nombre est une proportion par rapport au côté du carré qui vaut 1. Donc ici √φ * 1 = √φ . Mais quand on donnera une dimension réelle au côté 1 il ne faudra pas oublier de faire la multiplication par la taille du côté.)

J'ai ici créé un nouveau triangle tout à faire remarquable auquel on peut appliquer le théorème de Pythagore.

\[{{\sqrt{φ}}^2+1^2}= φ^2\]

Il s'agit du triangle de Kepler. Il y a un rapport du nombre d'or entre chaque côté.

Le bi-carré la base de monuments mégalithiques depuis des millénaires

Ce double-carré est vraiment une forme très courante en géométrie sacrée.

Le profil de la grande pyramide de Gizeh (Kheops)

C'est ainsi que la construction du triangle de Kepler obtenue avec le double carré se trouve être le profil de la grande pyramide de Gizeh.

Le côté de la pyramide vaut 2. Ainsi le demi côté vaut 1. La hauteur de la pyramide vaut √φ. Et l'apothème, vaut φ.

Géométrie sacrée profil de la grande pyramide de Gizeh (pyramide de Chéops) Nombre d'or, triangle de kepler

Le sol de la chambre haute de la grande pyramide de Gizeh est un bi-carré

Pour aller encore plus loin et montrer que ce n'est pas une proportion faite au hasard. La chambre haute de la grande pyramide de Gizeh est aussi construite selon un double carré !

Le sol de la chambre est un bi-carré. Ici on a un monument construit en vrai. Donc il y une dimension. L'unité de mesure utilisée est la coudée royale égyptienne. Pour faire court. Elle vaut ≈ 0,5236 mètre.

geometrie sacree chambre haute grande pyramide gizeh cheops coudee double carre nombre or

Le double carré de la chambre haute de la grande pyramide est composé de carrés de 10 coudées royales de côté.

La hauteur de la chambre est générée de manière un peu plus subtile. En fait, c'est une demi diagonale du double carré qui est relevé. (Le segment vert sur l'image précédente) On a donc 11,18033 coudées.. ce qui correspond à √5 * φ^2 mètre.

schéma de la chambre haute de la grande pyramide de gizeh. Dite chambre du roi.

Menhirs de Clendy à Yverdon

A des milliers de kilomètres de l'Egypte, mais également à 2 millénaires d'intervalle dans le temps, on retrouve aussi un alignement de menhirs à côté de chez moi qui est construit sur la base d'un bi-carré.

Il s'agit de l'alignement des menhirs de Clendy à Yverdon qui date du IV millénaire avant J.-C.

alignement-menhirs-de-clendy-yverdon

On ne sait pas si toutes les pierres sont encore là. On sait que le site a été sous l'eau pendant 2000 ans. La plupart des fosses des menhirs ont été découvertes en 1975 et ainsi en 1986 on a pu redresser les menhirs à leur emplacement originel supposé.

schéma directeur en double carré de la construction des menhirs de clendy

Le schéma directeur de construction de ce site est très probablement un double carré. Comme on l'a vu ci-dessus, ce double carré est une porte ouverte à tout l'univers du nombre d'or: pHi.

Cette idée du schéma directeur des menhirs de Clendy vient du livre "Géométrie sacrée" de Stéphane Cardinaux.

J'ai aussi remarqué que l'azimut de l'axe central est à 222°. C'est déjà un joli nombre. Mais c'est pas tout !!

222°, c'est le complément de 137.51° soit l'angle d'or. C'est la variante angulaire du nombre d'or.

angle d'or
Proportion dorée de circonférence d'un cercle

Donc les bâtisseurs de l'alignement de menhirs de Clendy ont réalisé un double carré, une géométrie qui ouvre directement sur le nombre d'or. Mais aussi ont aligné ce double carré avec un angle d'or par rapport au nord. Ceci il y a 6000 ans !

Le triangle 3-4-5

Le triangle 3-4-5 est le premier des triangles rectangles. Il s’agit du triangle rectangle à côtés entiers avec l’hypoténuse minimale, et le seul triangle dont les longueurs de côtés suivent une progression arithmétique.

Triangle 3-4-5 corde a 13 noeuds

Ce triangle 3-4-5 a des propriétés mathématiques intéressantes qui ont permis de construire un outil très utilisé des arpenteurs et bâtisseurs: la corde à 13 nœuds.

Pourquoi utiliser les nombres 12 et 60 pour diviser le temps ?

Pourquoi est-ce qu'il y a 12 heures sur un cadran de montre ?
Pourquoi est-ce que l'on divise un heure en 60 minutes, et une minute en 60 secondes ? ⏱

L'explication se trouve dans le triangle 3-4-5.

Avec les chiffres des côtés (3-4-5) on a peut faire une suite arithmétique (addition) et une suite géométrique (multiplication).
(Dans le même genre, le mythique nombre φ est la seule proportion qui est en même temps une suite arithmétique et une suite géométrique. Donc c'est le même genre de logique qu'on cherche avec le triangle 3-4-5)

  • 3 + 4 + 5 = 12
  • 3 * 4 * 5 = 60

J'ai repris cette idée chez Edmée Jomard (un des tout premier égyptologue ayant participé à la campagne napoléonienne en égypte), à la page 225 de son livre: "Mémoire sur le système métrique des anciens Égyptiens, contenant des recherches sur leurs connoissances géométriques et sur les mesures des autres peuples de l'antiquité " publiée en 1817.

Le détail est à la p225.

Jomard tire lui même cette idée du philosophe romain du 1er siècle Plutarque, qui lui-même dit le savoir du philosophe grec Platon (de 400 ans plus vieux). Il est connu que Platon a fait un séjour en égypte chez des prêtres à Héliopolis.

12 et 60 sont de plus des nombres dit "fiables"(selon la définition mathématiques des nombres qui peuvent se diviser facilement, donc très pratique pour faire des divisions horaires.)

Si on continue les propriétés mathématiques de ces nombres:
12*60 = 720
12+60 = 72

Magique non ?

Conclusions: tu as les bases pour explorer le monde

Maintenant que nous arrivons au terme de cette introduction (déjà hyper complète) à la géométrie sacrée, tu as les bases pour voir les monuments sous un regard neuf. Tu as de quoi décrypter les intentions des bâtisseurs.

Géométrie plutôt que chiffres à virgule

Si l'on se remémore les points importants, il faut se souvenir, que les anciens bâtisseurs n'ont pas le même rapport aux mathématiques que nous. Ils privilégient la géométrie, le dessin et pas les nombres en notation à virgule.

Des proportions en résonance fractale

Les anciens bâtisseurs aiment construire des bâtiments où les proportions de chaque élément sont en résonance les un avec les autres par des proportions.

La proportion la plus connue, et la plus "magique" étant la proportion dorée. Cette proportion qui met en lien le tout et sa partie de manière fractale.

Les anciens ont utilisé les propriétés de cette proportion dorée comme support d'un système d'unité de mesure avec la quine des bâtisseurs.

En prenant conscience que ces unités de mesure antiques ne sont pas juste des mesures étalonnées sur les pieds ou bras des monarques, mais sur des relations mathématiques, c'est toute une compréhension du monde qui s'ouvre.

Ceci, bien qu'en fait, le corps humain est, comme beaucoup de choses dans la nature, structuré sur la base de proportions de géométrie sacrée, et notamment autour du nombre d'or. Il n'est donc pas faux de dire qu'il y a un lien entre la mesure de partie du corps humain et des unités de mesures. Mais ce n'est pas QUE ça. Il ne faut pas oublier le sous-jacent mathématique.

Da_Vinci_Vitruve_Luc_Viatour

La géométrie sacrée relie tout. Elle fait entrer en résonance les humains et les constructions qu'ils habitent.

Ainsi, un temple, une cathédrale, une pyramide, un alignement de menhirs est généralement construit avec de la géométrie sacrée.

Les mêmes principes de construction se retrouvent du microcosme au macrocosme, de l'humain aux galaxies.

« Ce qui est en bas est comme ce qui est en haut, et ce qui est en haut est comme ce qui est en bas »

Cette citation est un des principaux enseignement d'Hermès Trismégiste que l'on retrouve dans la Table d'émeraude.

Exemple pratique de décodage de la géométrie sacrée d'une cathédrale

Quand on est quelque peu "initié" à ces connaissances hermétiques (comme la fermeture des boites Tupperware... :p ) il est possible de voir dans un tas de caillou un sens plus profond.

Voici un exemple pour illustrer mes propos.

Avec l'œil ouvert, il possible de repérer des pierres spéciales dans un simple dallage de cathédrale. Voici la pierre angulaire de la cathédrale de Fribourg.

pierre angulaire de la cathédrale de Fribourg
Pierre angulaire de la cathédrale de Fribourg

Ce sont en fait deux pierres allongées en granite. Le granite est très solide et ne se dilate pas. Cette pierre a du servir comme étalon de mesure pour construire la cathédrale. En fin de chantier elle a été intégrée au dallage.

Mesure de la diagonale de la pierre angulaire de la cathédrale de Fribourg

Comme on l'a vu ci-dessus, en géométrie sacrée c'est souvent la dimension des diagonales qui compte, et là on ne va pas être déçu....

Mais au passage, sache déjà que le petit côté de ce rectangle est formé par deux fois 1 pied romain. (29,635 cm)
(Le pied romain est toujours très utilisé de nos jours... c'est la hauteur d'une page A4 !!! soit 29,7cm)

pierre angulaire de la cathédrale de Fribourg detail mesure diagonale 1 metre

La diagonale de la pierre angulaire de la cathédrale de Fribourg vaut 1 mètre !!!
... et oui, le mètre est bien plus ancien qu'on le dit officiellement.
Il y a de nombreuses portes de monuments du XI au XVIII ème siècle qui ont une taille liée au mètre.

Il se pourrait même que le mètre soit déjà présent sur des constructions mégalithiques beaucoup plus anciennes...

De plus comme évoqué plus haut, il y a un lien entre le mètre et la coudée royale égyptienne.

Il est peut être à rappeler que le mètre est directement lié à la mesure de la circonférence de la Terre. Cette mesure a déjà été réalisée avec précision dans des temps assez anciens.

Ainsi en géométrie sacrée, le mètre est une unité de mesure qui permet de mettre en lien, en résonance avec la dimension de la Terre.

🌍

Au tout début de cet article, j'ai insisté sur les proportions. Sur des liens entre grandeur sans dimensions.

Je termine cet article en reliant ces proportions à une dimension, à une échelle. Ceci se fait avec des unités de mesure.

Ainsi la présence du mètre dans la pierre angulaire de la cathédrale de Fribourg me fait penser que celle-ci a des proportions qui sont reliées à la dimension de la Terre.

Voilà, je te laisse maintenant voir le monde et les monuments anciens avec un œil neuf.

le Grand architecte de l universe God_the_Geometer
Dieu l'architecte de l'univers, frontispice d'une bible moralisée.

Merci au logiciel geoGebra qui m'a permis de réaliser les nombreux dessins de géométrie sacrée.

Le H est la structure de base de nombreux temples

Il y a de nombreux temples qui sont construits sur la base d'un H... C'est une constante très vieille.

temple horus edfu pylone en H panorama
Temple d'Horus à Edfu (H comme Horus !)

Les pylônes des temples égyptiens sont en forme de H .... ils ont inspirés les temples juifs... (les Hébreux ayant séjournés en Egypte. D'ailleurs La pâques juive, c'est bien pour commémorer le départ des hébreux d'égypte.)

Les catHédrales sont majoritairement construites avec deux tours, comme les temples égyptiens.

Cathédrale Notre Dame Paris polaroid structure H

Le temple de Salomon avait 2 piliers à son entrée (obélisque égyptien ou pylône du temple égyptien ?)

Jakin et Boaz...

Temple de Salomon plier Jakin et Boaz...

Ces sont les mêmes piliers qui sont aussi toujours à l'intérieur des temples francs-maçons.

temple franc maçon Letchworth pilier jakin et boaz
Temple franc maçon de Letchworth avec les piliers Jakin et Boaz

Et si l'on remonte dans le temps (temples?) encore plus loin, on retrouve des H sur les ruines de Pumapunku à Tiahuanaco en Bolivie.

On retrouve également des H sur les piliers de Gobekli tepe en Turquie, le plus vieux "temple" connu de l'Humanité, construit il y a ~14 000 ans !

comparaison H bloc de pierre gobekli tepe et puma punku
En haut à Gobekli Tepe en bas à Pumapunku (aussi le C ?)

Gobekli tepe semble être une sorte d'école. Un lieu de rencontre et de transmission du savoir. Ce n'est pas un lieu d'Habitation. Les Humains de l'époque étaient nomades.

C'est un fait qui remet passablement en cause l'idée qu'on se faisait jusque là de l'Histoire. En effet, on pensait que pour construit de tels édifices (16 cercles / arènes avec des piliers mégalithiques finement taillés) il fallait une organisation de type cité-Etat, donc pas des nomades !

Le symbole du dollar vient aussi de piliers double

Le symbole du dollar $ vient des pièces espagnoles de 8 pesos avec 2 piliers symbolisant les colonnes d'Hercule (avec un H) , avec des banderoles autour. (Les Grecs parlaient de colonne d'Atlas)

Cette pièce de 8 espagnole a été un des moyens de paiement les plus utilisé sur le continent américain et donc a été repris comme symbole du dollar US $ au moment de sa création.

8_Reales,_1770,_British_Museum colonne dollars origine

On remarque au passage que la seconde barre du $ a disparue avec le temps... (simplification)...

Symbolique en langue des oiseaux du symbole du dollar $

Le symbole du $ peut aussi s'interpréter avec la langue des oiseaux.

C'est le symbole de la Manifesation fiXée..  en langue des oiseaux ST.. le crucifix en est un symbole...

C'est tout ce qui est figé.. STop 🛑 .. STate.. STatue, STone, Stupéfaction, STable, STar ⭐️, STella, aSTre, STatique, SThul, STŷlos = colonne pilier en grec ancien...   et tous les St-machin, Héros de la religion catHolique....

CHriST ...crucifié sur un Tau (lettre grecque) ... le Serpent sur le Tau qu'on retrouve déjà avec l'AnkH égyptien... ☥ (clé de vie...)

A noter que l'on retrouve dans CHriST ... le CH (on en verra un peu plus sur le CH ci-dessous..) et le ST de manifestation fixée comme vue plus Haut.
Et RI ça signifie quoi ?

Symbolique du H

Le H a une symbolique qui est toujours très liée à une porte, un pont, un moyen de relier un monde Humain avec un monde cacHé.

Porte dans le temple de pHilae en égypte

Le H est une porte dimensionnelle, c'est un moyen de transformation. Comme en français, dès qu'on met un H dans une suite de lettre il change la prononciation... même si il reste muet.

On voit ceci avec le H après un C... qui transforme ce C en CH .... CHuuut.
Tout comme le H après un P qui transforme le P en PH.... philosophe...

Le H signifie par symbole, mais ne s'exprime jamais. C'est pour ça qu'il est muet. Le mot muet provient de la même racine Mu qui est aussi à l'origine du mot "Mystère" (ce qui doit être tu..) C'est ça la pHilosopHie Hermétique...

(Hermétique comme les boites de conserve...)

decodage de la langue des oiseaux hieroglyphe
Hiérogylphe avec un H... (Hiéro signifie sacré)

Voici en vrac un certain nombre de signification du H issu de mon article sur le décodage de la langue des oiseaux:

H:  Huis – Porte – Huit – Double carré générateur de pHiHermèsHermétique – Lien Haut bas – Cadre de porte – Intermédiaire- Poumons – Respiration (H aspiré… Inspiré !) – Pont.

La rune Hagalaz ressemble étrangement à un H et c’est la rune qui débute l’ætt de Heimdall. Ce dernier est le gardien du pont Bifröst qui relie Ásgard et Midgard. Le monde des Hommes (les Terres du milieu) et le monde des Dieux. 

A noter que c'est bien de ce monde des terres du milieux que s'est inspiré Tolkien... le monde des Hommes, et des Hobbits..... 

Et de quoi il parle... ? Un de ses livres a pour titre "Les deux tours" !!!

les deux tours WTC cathédrale Notre Dame de Paris en flamme.. incendie H

Le H en géométrie sacrée

Le H est aussi ce qui transforme le Pi en PHI... deux nombres  fondamentaux dans les maths et dans la nature.. 

Phi Φest le nombre d'or.

Phyllotaxie nombre d'or pomme de pin
Le nombre d'or présent en phyllotaxie (pHi-llotaxie) sous forme de la suite de Fibonacci (pHi-bonacci)

Les catHédrales sont très très souvent construites sur la base de ce nombre d'or. Notamment dans leur tracé régulateur.

cathedrale de chartres
CatHédrale de Chartres qui abrite son célèbre labyrintHe..

Helvétie et Hydrogène, des ponts !

Quand au H de Helvète.. la CH .. confédération Helvétique... en quoi ce H est important ?

Ce serait intéressant de creuser l'histoire Suisse ??

La tribu des Helvètes dont est issu ce nom officiel de la Suisse est bien mystérieuse. Les Helvètes ont quitté leur pays en -58, mais on été forcés au retour par Jules César. On ne connait pas les raisons exactes de cette migration. On suppose que c'est une pression démographique. Mais rien n'est certain.

Dans tous les cas ce qui est certain, c'est que la Confédération Helvétique est un pays singulier. Un pays qui est composé de différentes régions, cultures, religions que tout oppose. Mais qui tient ensemble. C'est ça l'alchimie de la Suisse: faire tenir ensemble ce qui n'est pas fait pour aller ensemble.

Faire des ponts, des liens entre les cultures. Même au delà de ce petit territoire, le siège de nombreuses organisations internationales sont en Suisse et font le lien entre d'autres pays.

Le web, la toile de liens qui relie le monde virtuel a été créé au CERN sur le territoire de la Confédération Helvétique.

Il y a vraiment là quelques chose d'intéressant, le H est vraiment un lien.

.. et le H au milieu de mon prénom... il fait un pont ? .. à non plutôt des ponts... suivant mon nom ... ;-) 

...Tout comme le H qui est le symbole chimique de l'Hydrogène, qui littéralement signifie "générateur d'eau". En effet le H permet de faire de nombreuses liaisons covalentes, soit des ponts entre les atomes et les molécules. Il y a même un type particulier de liaison Hydrogène qu'on appelle parfois: "pont hydrogène".

Hydrogène

L'Hydrogène est l'élément atomique le plus répandu de l'univers. Il est le composant principal des étoiles. (du soleil Helios !) Il est une composant fondamental de l'eau H2O, ainsi que des Hydrocarbures CH.... (du méthane CH4 aux complexes CnHm)

On retrouve notre CH, Carbone Hydrogène, la base des êtres vivants.

Conclusions... il faut bûcher...

Une H... c'est connu c'est un outil utilisé pour cogner... 

Hache

Pour obtenir une congnoissance comme on disait dans le passé.... un mot qui est relié à la notion de co-Gnose... LA connaissance....    celle des Gnomes qui vont chercher des Gemmes 💎💎💎.. à l'intérieur, en soi....  chez les AnGe...

.... Je...
.. Je n'en dit pas plus... le G est une autre histoire.... pour en savoir plus, petit tour vers la langue des oiseaux...

Hache peinte sur un mur de l'abbaye de St-Maurice

Mais en effet, le H est bien un symbole qui nous annonce une porte, un Huis, un moyen d'entrer dans une autre dimension, d'aller vers une transformation...

C'est un passage entre le Haut et Bas... c'est le boulot de l'Humain, de l'Homme... que d'être ce lien, ce pont entre les mondes. Ce pont entre les deux facettes de la dualité.

C'est ainsi qu'on retrouve ce symbole de H ou de pilier double un peu partout et dans toute l'Histoire de l'Humanité.

h bloc pierre puma punku
H de Puma Punku qui signifie la Porte du Puma
Remonter