Qu’est ce que la géométrie sacrée ? – Introduction

La plupart des gens ont fait de la "géométrie" à l'école, mais qu'est-ce que la "géométrie sacrée" ?

La langue des oiseaux nous donne directement une réponse: la géométrie: Ça crée.

Bien qu'incomplète, je trouve que c'est une bonne définition. Car oui, la géométrie permet de créer.

C'est même la base de l'art des bâtisseurs, et pas n'importe lesquels. On parle là des bâtisseurs des monuments les plus connus, les plus emblématiques, les plus beaux, et aussi les plus mystérieux de cette planète!

En effet, la géométrie sacrée est omniprésente chez les bâtisseurs de cathédrales, mais aussi chez les bâtisseurs de pyramides et même chez les bâtisseurs de mégalithes.

La géométrie sacrée est probablement une des sciences les plus anciennes qui existe.

Dans cet article nous allons voir les bases de la géométrie sacrée, nous allons voir de quoi te faire l'oeil à une autre manière de voir.

Ainsi tu pourras regarder sous un oeil neuf des monuments que tu as déjà certainement vus, mais dont tu n'avais pas pris l'ampleur de la magie de leur construction !

pyramide gizeh panorama dromadaire

Introduction à la Géométrie sacrée en vidéo

Le contenu de cet article est également disponible en vidéo. Les contenus se recoupent, mais parfois il y a des anecdotes que l'on ne voit quand dans une seule version.

Tout est question de proportion

Pour bien entrer dans le sujet de la géométrie sacrée. Il faut se remettre dans le contexte ancien. Le mode de pensée n'est pas le même que de nos jours.

La manière d'aborder les mathématiques dans l'antiquité et de nos jours est très différente.

De nos jours on aime bien utiliser les nombres à virgule.

Si je prend un passant au hasard dans la rue et que je lui demande ce qu'est le nombre PI, π....

..... majoritairement il va me répondre:

  • C'est 3,1415.....

OK, c'est juste, c'est la représentation du nombre π sous forme de nombre à virgule. Mais quel est le sens du nombre π ? Qu'est-ce qu'il représente ?

Si la personne a fait un peu quelques études, elle va me répondre qu'il y a un lien avec le cercle.... mais la réponse complète est rare.

Alors pour te "culturer" un peu, le nombre π représente le rapport qu'il y a entre la circonférence d'un cercle et son diamètre. Ce rapport est toujours le même peu importe la taille du cercle. On a donc là une proportion, juste une proportion peu importe la taille, la mesure de l'objet.

Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π
Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π

Ainsi, cet exemple montre bien qu'il est possible de manipuler des objets mathématiques juste avec des proportions.

C'est plus tard, dans un second temps que l'on va fixer la proportion à une échelle précise en se basant sur une grandeur physique réelle.

La taille de la Terre par exemple... d'où le fait que l'on parle de Geo-métrie, mot qui signifie mesure de la Terre.

On verra plus tard, que les unités de mesures utilisées en géométrie sacrée sont tout à fait étonnantes.... On va parler de pieds, de coudées, mais aussi du mètre.

Là on verra que l'histoire officielle ne semble pas correspondre avec l'observation des monuments anciens !!

Il y a un bug dans la matrice !!!

Une des explications possible, est que des sociétés secrètes ne nous ont pas tout dit.... Je pense particulièrement à des sociétés qui ont un compas et une équerre comme emblème.....

Des sociétés chez qui la Géométrie semble quelques chose d'important, et même de sacré...

équerre et compas emblème franc maçon G

Sans calculatrice il est possible d'être plus précis

Tu peux également abandonner ta calculatrice, car en géométrie sacrée, on se fiche bien de savoir que π se représente en notation décimale à virgule par 3,1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811.... et encore des milliards de décimales...

Cette représentation est très lourde, toujours incomplète et donc jamais exacte. Alors qu'il suffit d'une lettre pour tout dire: π

En géométrie sacrée, il faut penser comme les anciens. Si l'on se met dans ce mode de pensée, il y a des correspondances qui sautent aux yeux, alors que si on reste dans le mode notation décimale à virgule, on passe à côté.

Voici encore un exemple d'un sondage dans la rue. Si je prends quelqu'un au hasard et que je lui demande ce qu'est la racine carré de 2, soit la notation: √2 .....

.... et bien là j'ai souvent un grand silence. Ou encore, la personne sort son smartphone 📱et tente de trouver le symbole √ sur sa calculette... et c'est le drame... sauf si elle connait l'astuce de passer son iPhone en mode panoramique pour découvrir des touches supplémentaires...

... et là on me dit fièrement √2 = 1.414213562373095048801688724209...

OK, mais comme avec le nombre π ci-dessus, je demande: ... et ça représente quoi √2 , ça a quel sens ?

Bref, tu l'auras compris. Notre société ne fonctionne pas du tout de la même manière. On a un certain savoir de type bourrage de crâne, mais quand à comprendre le fondement des choses. C'est pas terrible.

Donc, la racine de 2 peut tout simplement se comprendre comme étant la diagonale d'un carré de 1 de côté. (toujours en proportion, sans échelle particulière)

racine-de-2-diagonale-carre-Construction_of_square_root_of_2_on_the_line_number
La racine carrée de 2 est tout simplement la diagonale d'un carré de 1 de côté.

On verra ci-dessous, qu'en géométrie sacrée, les diagonales de carrés et de rectangles sont très souvent utilisées. Notamment pour représenter la notion d'angle.

La plus ancienne représentation que l'on a de la connaissance mathématique de la racine carrée de 2 date de ~ -1900. Il s'agit de la tablette d'argile YBC 7289.

Tablette d'argile babylonienne YBC 7289 montrant la √2
Tablette d'argile babylonienne montrant la √2

Personnellement, depuis que je m'intéresse à la géométrie sacrée, je vois des constructions, notamment mégalithiques, qui mettent en oeuvre des connaissances mathématiques du même type et ceci dans un temps bien plus ancien !

Depuis quelques années, Norman Wildberger, un Dr en math, professeur dans une université australienne développe une nouvelle forme de trigonométrie dite rationnelle, la trigonométrie de Wildberger.

Cette trigonométrie est beaucoup plus simple à utiliser et plus efficace pour faire des calculs par ordinateur car elle ne manipule pas de nombres réels à virgule flottante. On retrouve donc là une approche similaire à celle des anciens. Et on se dit que c'était très intelligent !!

On redécouvre de plus en plus, que notre mode de pensée actuel nous fait passer à côté d'autre chose. On redécouvre que cette ancienne manière de penser qu'on voit souvent comme primitive est en fait souvent plus évoluée qu'on le crois au premier abord.... et même plus évolué que ce qu'on fait actuellement !

Plein de nombres constructibles irrationnels et même transcendants!

Alors que de nos jours on aime bien utiliser des nombres un peu ronds.... 1 mètre, 2 mètres. ou encore, 1,5m ou à la limite 2,60 ou 3,9.... les anciens ont l'art d'utiliser des nombres spéciaux qui sont difficilement représentables avec la notation décimale à virgule.

Donc c'est normal qu'on ai un peu de peine à se comprendre !

🤷🏼‍♀️

Des nombres constructibles

On a déjà vu ci-dessus des nombres comme π ou √2. Mais on verra que c'est pas fini. Il y a encore une foule d'autres racines... notamment √3 et √5. Ceci tout simplement car c'est ainsi qu'on calcule la diagonale d'un rectangle. (ci-dessous représentée par la lettre c)

On utilise le fameux théorème de Pythagore. (en fait ce théorème était connu bien avant la naissance de Pythagore... ce dernier l'a juste rapporté comme souvenir d'un voyage en égypte...)

\[c = {\sqrt{a^2+b^2} }\]

Les nombres √2, mais aussi √3, sont des nombres dit irrationnels, car on ne peut pas les exprimer par un ratio. (une fraction simple)

Mais comme on l'a vu par la géométrie, ce sont des diagonales. C'est simple à manipuler. Ce sont des nombres dit Constructibles. Car on peut les construire à la règle et au compas.

Des nombres non constructibles à la règle et au compas

Par contre pour le nombre π, c'est aussi un nombre irrationnel, mais en plus il est transcendant !
(comme son copain le nombre e)

Ça signifie que π n'est la solution d'aucune équation polynomiale. Donc avec ça on est coincé. Il n'est pas possible de dessiner le nombre π.
(Donc sur une ligne droite, sans le dérouler comme c'est fait dans l'animation en début de page.)

Pour dessiner π il y a des méthodes d'approximation, mais ça reste une approximation. C'est la cas par exemple de la méthode de Kochanski.

Le problème de la non-constructibilité de π, c'est ce qui empêche de résoudre le problème de la quadrature du cercle. Un problème qui a occupé les mathématiciens pendant des millénaires.

L'idée de base c'est de construire un carré qui a la même aire (surface) qu'un cercle donné.

quadrature du cercle Le carré de côté √π a la même surface que le cercle de rayon 1
Le carré de côté √π a la même surface que le cercle de rayon 1

Pour construire ce carré, il nous faut trouver la √π .... et là ça coince. Impossible à résoudre avec seulement un compas et une règle.

Donc depuis la fin du 19ème siècle on sait que c'est peine perdue de trouve une solution à ce problème, à cause de la transcendance de π.

D'où l'expression "Chercher à résoudre la quadrature du cercle"...

.... et pourtant !

La grande pyramide de Gizeh une solution au problème de la quadrature du cercle.

De mon observation de la géométrie sacrée et des monuments anciens, je vois que le problème de la quadrature du cercle a été résolu. Du moins, ça en est une excellente approximation.

Cette solution c'est la grande pyramide de Gizeh. La géométrie de cette pyramide nous montre une base carré qui a pour origine un cercle qui sert à construire la hauteur de la pyramide.

On reviendra sur la géométrie de la grande pyramide dans un article dédié car c'est là l'emblème même de la géométrie sacrée. Il y a tellement de chose à dire sur ce monument incroyable !

martouf en egypte a gizeh pyramide

Le nombre d'or, le cœur de la géométrie sacrée

Ici j'aimerai juste souligner que cette prouesse d'avoir matérialisé en si imposant la solution de la quadrature du cercle tient aux propriétés d'un nombre que je n'ai pas encore évoqué ici, mais qui est le cœur de la géométrie sacrée. Il s'agit du nombre d'or.

On l'écrit avec la lettre phi: φ

Il y a tellement de choses à dire sur le nombre d'or, ou plutôt la proportion dorée, vu qu'on a dit que tout est proportion, que j'avais déjà écrit un article pour montrer tous les domaines dans lesquels le nombre d'or est la structure sous-jacente.

On a de la chance, le nombre d'or est un nombre constructible. Il vaut:

\[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\]
nombre d'or en ligne

Trois points alignés, déterminant deux segments forment une section dorée (un rapport égal à Phi), s’il y a de la petite partie à la grande, le même rapport que de la grande au tout.

\[{a+b \over a} = {a \over b} \]

Le nombre d’or est le seul rapport qui met en résonance la partie avec le tout. On peut donc le voir comme étant une résonance (fractale) entre la créature et son créateur.

C’est pour cette raison que ce rapport est souvent appelé: La divine proportion.

Dans le cas de la quadrature du cercle, l'astuce utilisée dans la construction de la grande pyramide de Gizeh a été de remplacer un expression de π inconstructible par une expression approximative de composée de φ qui elle est constructible:

\[{4 \over π} ≈ {\sqrt{φ}} \]
Quadrature du cercle solution geometrie sacree pi racine nombre or

C'est peut être beaucoup d'informations d'un coup. On verra ci-dessous d'où viennent ces traits de construction. Ces formes, ces diagonales et tout ces nombres remarquables que l'on retrouve tout le temps en géométrie sacrée.

A force de les voir on commence à les savoir par cœur et être capable de faire le lien entre une proportion géométrique, son expression mathématique algébrique et sa notation numérique.

Valeurs numériques de nombres courants en géométrie sacrée

Afin de faire le lien entre les anciens et nous, voici les nombres les plus couramment utilisés en géométrie sacrée en expression algébrique et dans leur équivalent en notation numérique:

\[φ ≈ 1.61803398875 \] \[ {1 \over φ} ≈ 0.61803398875 \] \[ {φ^2 } ≈ 2.61803398875 \] \[ √5 ≈ 2.2360679775 \] \[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\] \[{1 \over φ} = {2 \over {1 + \sqrt{5}}} ≈ 0.61803398875\] \[e ≈ 2.71828182846\] \[e ≈ {φ^2 } + {1 \over 10} = 2.71803398875 \] \[√φ ≈ 1.27201964951 \] \[{4 \over π} ≈ 1.27323954474 \] \[ √φ ≈ {4 \over π} \] \[√3 ≈ 1.7320508075688772935\] \[√2 ≈ 1.41421356237\] \[ \cos{π \over 6} = {\sqrt{3} \over 2} ≈ 0.86602540378 \] \[ π ≈ 3.141592653589793 \] \[ {π -φ^2} ≈ 0.52355866484 \] \[ {π \over 6} ≈ 0.5235987756 \] \[ {φ^2 \over 5} ≈ 0.52360679775 \] \[ {5 \over 6 }π ≈ 2.61799387799 \] \[ {φ^2} ≈ 2.61803398875 \] \[ {1+2+ \sqrt{5} \over 10} ≈ 0.52360679775 \]

L'essentiel des nombres à retenir

Le nombre d'or

φ = le nombre d'or = 1.61803398875...
Mais aussi ses déclinaisons, comme son inverse qui = 0.61803398875... (1 de moins) et son carré φ^2 = 2.61803398875... (1 de plus)

Là autour, il y a plein d'approximations très proches faites à base du nombre π. Comme 5/6 π ≈ 2,61799387799...

C'est très étonnant que ces nombres si spéciaux puissent avoir des liens d'approximation si serrés.

Mathématiquement ces liens sont des approximations et pas des valeurs exactes. Il y a une page wikipedia qui les recense comme des coïncidences mathématiques.

Dans une réalisation architecturale, vu que l'on est pas dans le monde idéal des mathématiques, mais dans un monde où les dimensions ont une marge d'erreur, dans un monde où la précision n'est pas infinie. Dans ce cas, que l'on utilise la valeur exacte où une approximation, le bâtiment construit sera le même.

La géométrie sacrée étant principalement utilisée pour créer des bâtiments, certaines personnes n'hésitent pas à faire des raccourcis et dire que des approximations sont des égalités....

....Puis les puristes des maths leur sautent à la gorge.. et on voit des combats. Il y a de trolls qui polluent les espaces de commentaires sur le net en débats stériles de savoir si ce sont des approximations ou des valeurs réelles.

Pour cette raison dans cet article, je tente de bien distinguer les approximations des valeurs réelles mathématiques.

Cathédrale Notre Dame Paris polaroid structure H

La coudée royale égyptienne

Il existe deux définitions mathématiques simple de la coudée royale égyptienne:

0,523606... mètre = φ^2/5 mètre
1/10 du périmètre du triangle des bâtisseurs en mètre (triangle rectangle don l'hypoténuse est la diagonale d'un double carré.)
0,523598... mètre = π/6 mètre
1/6 de la circonférence d'un cercle de 1m de diamètre

triangle des bâtisseurs origine coudée royale égytienne
fleur de vie origine coudee royale egyptiennen

Il est à noter que la coudée royale égyptienne est la même que la coudée utilisée par les bâtisseurs de cathédrale dans le système de "quine des bâtisseurs" (aussi appelé parfois "pige des bâtisseurs" et qui sert à construire des outils comme la "canne des bâtisseurs")

Quine des bâtisseurs de cathédrale un système de mesure imbriqué fractalement avec un rapport du nombre d'or. On le voit bien dans un pentagramme.

Dans ce cas, je viens d'introduire la notion d'unité de mesure. Soit un nombre dans une proportion pure, mais qui est lié à une dimension physique concrète.

Il y a de nombreuses relations mathématiques qui peuvent mener à la définition de la coudée royale. Tout ceci fait encore largement débat. Je n'entrerai pas dans plus de détail dans cet article introductif déjà bien long !

Je n'irai pas non plus ici beaucoup plus loin la notion d'unité de mesure ancienne. C'est un vaste sujet qui méritera un articles complet. (coudée royale, pied, yard mégalithique, pied romain, coudée de Nippur, origine du mètre.. etc..)

coudee-royale-egyptienne-musee-saqqarah

Cascade des racines carrées

Maintenant que les bases sont posées. Maintenant que tu as eu l'occasion de comprendre que les anciens avaient un rapport aux mathématiques très différent de ce qui se fait actuellement. On va pouvoir entrer dans le vif du sujet.

Voici la construction de l'essentiel des nombres dont on a besoin et ceci juste à partir d'un carré de 1 de côté. (toujours sans dimension, juste une proportion.)

C'est une cascade de diagonale. On commence par dessiner le carré de 1 de côté. Sa diagonale vaut √2.

Puis on reporte cette diagonale pour créer un rectangle avec un côté qui vaut √2 et l'autre qui vaut toujours 1. La diagonale de ce rectangle vaut √3.

Puis on procède de la même manière, on reporte à nouveau la diagonale de ce rectangle pour obtenir un nouveau rectangle et on obtient une diagonale qui vaut √4 = 2.

Et là, c'est magique. A partir d'un seul carré, on en a maintenant deux !

geometrie-sacrée geogebra-cascade-racine-diagonale-moyen-martouf

Le double carré, le bi-carré est une forme très importante de la géométrie sacrée. C'est depuis cette forme que l'on peut générer toute une géométrie liées à φ , le nombre d'or. Ceci car la diagonale d'un double carré (en rouge) vaut √5.

Et il se trouve que √5 c'est la somme du nombre d'or et de son inverse !

\[ {1 \over φ} + φ = \sqrt{5} \]

J'ai mis un point sur la diagonale rouge pour montrer la différence ente φ et 1/φ.

On va regarder ça en détail.

Le double carré, la base d'une géométrie du nombre d'or

On a vu ci dessus que le nombre d'or vaut:

\[φ = {1 + \sqrt{5} \over 2} = {1 \over 2} +{\sqrt{5} \over 2} ≈ 1.61803398875\]

On va observer à quoi ça correspond en terme de géométrie.

double carré ou bi-carré dans la géométrie sacrée, base de la génération du nombre d'or

Si l'on commence sur le point en bas à droite du double carré, on peut obtenir un segment vertical qui fait la moitié du côté, soit 1/2.

Depuis là, on ajoute le segment vert clair. Soit la diagonale d'un rectangle 1/2 et 1. Ce qui revient à la moitié de la diagonale du bi-carré. Soit √5/2.

On voit que ceci correspond tout à fait à l'équation qui nous donne la valeur de φ. Voilà. On a généré la longueur du nombre d'or.

C'est grâce à cette longueur que j'ai pu placer le point rouge qui coupe la diagonale √5 avec 1/φ d'un côté et φ de l'autre.

Ensuite, au centre il y a une droite verticale orangée. Je l'ai générée en faisant croiser la longueur de φ depuis le coin en bas à droite, avec le prolongement du côté commun aux deux carrés du bi-carré.

Voilà, on a ainsi généré un segment de longueur √φ.
(Petit rappel, chaque nombre est une proportion par rapport au côté du carré qui vaut 1. Donc ici √φ * 1 = √φ . Mais quand on donnera une dimension réelle au côté 1 il ne faudra pas oublier de faire la multiplication par la taille du côté.)

J'ai ici créé un nouveau triangle tout à faire remarquable auquel on peut appliquer le théorème de Pythagore.

\[{{\sqrt{φ}}^2+1^2}= φ^2\]

Il s'agit du triangle de Kepler. Il y a un rapport du nombre d'or entre chaque côté.

Le bi-carré la base de monuments mégalithiques depuis des millénaires

Ce double-carré est vraiment une forme très courante en géométrie sacrée.

Le profil de la grande pyramide de Gizeh (Kheops)

C'est ainsi que la construction du triangle de Kepler obtenue avec le double carré se trouve être le profil de la grande pyramide de Gizeh.

Le côté de la pyramide vaut 2. Ainsi le demi côté vaut 1. La hauteur de la pyramide vaut √φ. Et l'apothème, vaut φ.

Géométrie sacrée profil de la grande pyramide de Gizeh (pyramide de Chéops) Nombre d'or, triangle de kepler

Le sol de la chambre haute de la grande pyramide de Gizeh est un bi-carré

Pour aller encore plus loin et montrer que ce n'est pas une proportion faite au hasard. La chambre haute de la grande pyramide de Gizeh est aussi construite selon un double carré !

Le sol de la chambre est un bi-carré. Ici on a un monument construit en vrai. Donc il y une dimension. L'unité de mesure utilisée est la coudée royale égyptienne. Pour faire court. Elle vaut ≈ 0,5236 mètre.

geometrie sacree chambre haute grande pyramide gizeh cheops coudee double carre nombre or

Le double carré de la chambre haute de la grande pyramide est composé de carrés de 10 coudées royales de côté.

La hauteur de la chambre est générée de manière un peu plus subtile. En fait, c'est une demi diagonale du double carré qui est relevé. (Le segment vert sur l'image précédente) On a donc 11,18033 coudées.. ce qui correspond à √5 * φ^2 mètre.

schéma de la chambre haute de la grande pyramide de gizeh. Dite chambre du roi.

Menhirs de Clendy à Yverdon

A des milliers de kilomètres de l'Egypte, mais également à 2 millénaires d'intervalle dans le temps, on retrouve aussi un alignement de menhirs à côté de chez moi qui est construit sur la base d'un bi-carré.

Il s'agit de l'alignement des menhirs de Clendy à Yverdon qui date du IV millénaire avant J.-C.

alignement-menhirs-de-clendy-yverdon

On ne sait pas si toutes les pierres sont encore là. On sait que le site a été sous l'eau pendant 2000 ans. La plupart des fosses des menhirs ont été découvertes en 1975 et ainsi en 1986 on a pu redresser les menhirs à leur emplacement originel supposé.

schéma directeur en double carré de la construction des menhirs de clendy

Le schéma directeur de construction de ce site est très probablement un double carré. Comme on l'a vu ci-dessus, ce double carré est une porte ouverte à tout l'univers du nombre d'or: pHi.

Cette idée du schéma directeur des menhirs de Clendy vient du livre "Géométrie sacrée" de Stéphane Cardinaux.

J'ai aussi remarqué que l'azimut de l'axe central est à 222°. C'est déjà un joli nombre. Mais c'est pas tout !!

222°, c'est le complément de 137.51° soit l'angle d'or. C'est la variante angulaire du nombre d'or.

angle d'or
Proportion dorée de circonférence d'un cercle

Donc les bâtisseurs de l'alignement de menhirs de Clendy ont réalisé un double carré, une géométrie qui ouvre directement sur le nombre d'or. Mais aussi ont aligné ce double carré avec un angle d'or par rapport au nord. Ceci il y a 6000 ans !

Le triangle 3-4-5

Le triangle 3-4-5 est le premier des triangles rectangles. Il s’agit du triangle rectangle à côtés entiers avec l’hypoténuse minimale, et le seul triangle dont les longueurs de côtés suivent une progression arithmétique.

Triangle 3-4-5 corde a 13 noeuds

Ce triangle 3-4-5 a des propriétés mathématiques intéressantes qui ont permis de construire un outil très utilisé des arpenteurs et bâtisseurs: la corde à 13 nœuds.

Pourquoi utiliser les nombres 12 et 60 pour diviser le temps ?

Pourquoi est-ce qu'il y a 12 heures sur un cadran de montre ?
Pourquoi est-ce que l'on divise un heure en 60 minutes, et une minute en 60 secondes ? ⏱

L'explication se trouve dans le triangle 3-4-5.

Avec les chiffres des côtés (3-4-5) on a peut faire une suite arithmétique (addition) et une suite géométrique (multiplication).
(Dans le même genre, le mythique nombre φ est la seule proportion qui est en même temps une suite arithmétique et une suite géométrique. Donc c'est le même genre de logique qu'on cherche avec le triangle 3-4-5)

  • 3 + 4 + 5 = 12
  • 3 * 4 * 5 = 60

J'ai repris cette idée chez Edmée Jomard (un des tout premier égyptologue ayant participé à la campagne napoléonienne en égypte), à la page 225 de son livre: "Mémoire sur le système métrique des anciens Égyptiens, contenant des recherches sur leurs connoissances géométriques et sur les mesures des autres peuples de l'antiquité " publiée en 1817.

Le détail est à la p225.

Jomard tire lui même cette idée du philosophe romain du 1er siècle Plutarque, qui lui-même dit le savoir du philosophe grec Platon (de 400 ans plus vieux). Il est connu que Platon a fait un séjour en égypte chez des prêtres à Héliopolis.

12 et 60 sont de plus des nombres dit "fiables"(selon la définition mathématiques des nombres qui peuvent se diviser facilement, donc très pratique pour faire des divisions horaires.)

Si on continue les propriétés mathématiques de ces nombres:
12*60 = 720
12+60 = 72

Magique non ?

Conclusions: tu as les bases pour explorer le monde

Maintenant que nous arrivons au terme de cette introduction (déjà hyper complète) à la géométrie sacrée, tu as les bases pour voir les monuments sous un regard neuf. Tu as de quoi décrypter les intentions des bâtisseurs.

Géométrie plutôt que chiffres à virgule

Si l'on se remémore les points importants, il faut se souvenir, que les anciens bâtisseurs n'ont pas le même rapport aux mathématiques que nous. Ils privilégient la géométrie, le dessin et pas les nombres en notation à virgule.

Des proportions en résonance fractale

Les anciens bâtisseurs aiment construire des bâtiments où les proportions de chaque élément sont en résonance les un avec les autres par des proportions.

La proportion la plus connue, et la plus "magique" étant la proportion dorée. Cette proportion qui met en lien le tout et sa partie de manière fractale.

Les anciens ont utilisé les propriétés de cette proportion dorée comme support d'un système d'unité de mesure avec la quine des bâtisseurs.

En prenant conscience que ces unités de mesure antiques ne sont pas juste des mesures étalonnées sur les pieds ou bras des monarques, mais sur des relations mathématiques, c'est toute une compréhension du monde qui s'ouvre.

Ceci, bien qu'en fait, le corps humain est, comme beaucoup de choses dans la nature, structuré sur la base de proportions de géométrie sacrée, et notamment autour du nombre d'or. Il n'est donc pas faux de dire qu'il y a un lien entre la mesure de partie du corps humain et des unités de mesures. Mais ce n'est pas QUE ça. Il ne faut pas oublier le sous-jacent mathématique.

Da_Vinci_Vitruve_Luc_Viatour

La géométrie sacrée relie tout. Elle fait entrer en résonance les humains et les constructions qu'ils habitent.

Ainsi, un temple, une cathédrale, une pyramide, un alignement de menhirs est généralement construit avec de la géométrie sacrée.

Les mêmes principes de construction se retrouvent du microcosme au macrocosme, de l'humain aux galaxies.

« Ce qui est en bas est comme ce qui est en haut, et ce qui est en haut est comme ce qui est en bas »

Cette citation est un des principaux enseignement d'Hermès Trismégiste que l'on retrouve dans la Table d'émeraude.

Exemple pratique de décodage de la géométrie sacrée d'une cathédrale

Quand on est quelque peu "initié" à ces connaissances hermétiques (comme la fermeture des boites Tupperware... :p ) il est possible de voir dans un tas de caillou un sens plus profond.

Voici un exemple pour illustrer mes propos.

Avec l'œil ouvert, il possible de repérer des pierres spéciales dans un simple dallage de cathédrale. Voici la pierre angulaire de la cathédrale de Fribourg.

pierre angulaire de la cathédrale de Fribourg
Pierre angulaire de la cathédrale de Fribourg

Ce sont en fait deux pierres allongées en granite. Le granite est très solide et ne se dilate pas. Cette pierre a du servir comme étalon de mesure pour construire la cathédrale. En fin de chantier elle a été intégrée au dallage.

Mesure de la diagonale de la pierre angulaire de la cathédrale de Fribourg

Comme on l'a vu ci-dessus, en géométrie sacrée c'est souvent la dimension des diagonales qui compte, et là on ne va pas être déçu....

Mais au passage, sache déjà que le petit côté de ce rectangle est formé par deux fois 1 pied romain. (29,635 cm)
(Le pied romain est toujours très utilisé de nos jours... c'est la hauteur d'une page A4 !!! soit 29,7cm)

pierre angulaire de la cathédrale de Fribourg detail mesure diagonale 1 metre

La diagonale de la pierre angulaire de la cathédrale de Fribourg vaut 1 mètre !!!
... et oui, le mètre est bien plus ancien qu'on le dit officiellement.
Il y a de nombreuses portes de monuments du XI au XVIII ème siècle qui ont une taille liée au mètre.

Il se pourrait même que le mètre soit déjà présent sur des constructions mégalithiques beaucoup plus anciennes...

De plus comme évoqué plus haut, il y a un lien entre le mètre et la coudée royale égyptienne.

Il est peut être à rappeler que le mètre est directement lié à la mesure de la circonférence de la Terre. Cette mesure a déjà été réalisée avec précision dans des temps assez anciens.

Ainsi en géométrie sacrée, le mètre est une unité de mesure qui permet de mettre en lien, en résonance avec la dimension de la Terre.

🌍

Au tout début de cet article, j'ai insisté sur les proportions. Sur des liens entre grandeur sans dimensions.

Je termine cet article en reliant ces proportions à une dimension, à une échelle. Ceci se fait avec des unités de mesure.

Ainsi la présence du mètre dans la pierre angulaire de la cathédrale de Fribourg me fait penser que celle-ci a des proportions qui sont reliées à la dimension de la Terre.

Voilà, je te laisse maintenant voir le monde et les monuments anciens avec un œil neuf.

le Grand architecte de l universe God_the_Geometer
Dieu l'architecte de l'univers, frontispice d'une bible moralisée.

Merci au logiciel geoGebra qui m'a permis de réaliser les nombreux dessins de géométrie sacrée.

41 thoughts on “Qu’est ce que la géométrie sacrée ? – Introduction

  1. Répondre

    […] à évoluer, tellement le sujet a du potentiel à se développer. J’ai également écrit un article à propos de la Géométrie sacrée pour expliquer le mode de pensée des anciens […]

  2. Répondre
    Sbgodin - 29 novembre 2019

    Hello,

    Il y a une petite erreur dans la phrase suivante : « L’idée de base c’est de construire un carré qui a la même air (surface) qu’un cercle donné. ». Il est évident qu’il faut parler de volume plutôt que de surface quand il s’agit d’aire.

    Merci pour cet agréable moment de lecture 🙂

    1. Répondre
      Diplomaths - 30 novembre 2019

      Sbgodin
      ” Il est évident qu’il faut parler de volume plutôt que de surface quand il s’agit d’aire.”
      Vous racontez n’importe quoi. Vraiment.
      Ne pas faire la différence entre un volume et une aire… on part de loin là…

      1. Répondre
        Sbgodin - 30 novembre 2019

        Je soulignais la petite erreur de typo concernant le carré qui a la même « air » qu’il aurait fallu orthographier « airE ». De quoi j’ai l’aire maintenant ?

        1. Répondre
          Martouf - 5 décembre 2019

          Merci pour ces comentAIRes…

          La faute de typo est corrigée. C’est maintenant une “aire”…
          C’est bien, à “l’ère” de l’information on peut modifier nos écrits plus vite que si c’était écrit à 500 000 exempleAIRES sur papier….

          Bonne journée à tous les gens qui ne manquent pas d’air ! 😛

  3. Répondre

    […] Pour plus de détail voici mon article à propos de la géométrie sacrée. […]

  4. Répondre

    […] Pour en savoir plus sur la géométrie sacrée, j’ai écrit un article d’introduction sur le … […]

  5. Répondre

    […] moi je fais le lien avec les H et la forme du double carré génératrice de la géométrie du nombre d’or.. et d’autres. On retrouve aussi les H à puma Punku, gobekli tepe, sur la forme de temple […]

  6. Répondre
    Giuseppe - 6 décembre 2019

    Grand Martouf,
    Bisogna ringraziarti per gli studi che hai fatto sull’antichità Mesopotamia/Sumerica/Egiziana che ha fondato il sistema numerico sessagesimale come hai suggerito con le due identità ; 3+4+5=12 ed 3*4*5*=60
    Tuttavia non hai proseguito in ciò che essi avevano conquistato: la misura del tempo annuale che non è solo il risultato di osservazioni perché queste potevano solo confermare ciò che il costruttore del Cosmo( La Natura) ha fissato nell’eternità dei Numeri che precedono il sapere degli Uomini(l’Umanità).
    vengo al dunque:
    Pitagora,che considero Le Grand Savant dell’Antichità, aveva osservato che il suo teorema poteva scriversi anche in altro modo: [( 1/a^2+1/b^2)-1/c^2] *10^3=
    10^3 ( 481/3600) ^1/2]=1000( 0.365528536..)= 365,528536 gg
    il decimale 0,528536 in eccesso viene compensato introducendo 1 giorno.il quarto anno ,perché (366-365)/4 00,25 circa .
    ABBIAMO SCOPERTO CHE GLI ANTICHI seppero fondare il sistema di misura del TEMPO E DELLO Spazio che ancor oggi i moderni scienziati non possono farne a meno.
    Saluti da Joseph .
    Turin.
    il, & dicembre 2019

    1. Répondre
      Martouf - 6 décembre 2019

      Bonjour, merci pour votre commentaire très intéressant.
      Il y a un point que je ne comprends pas.
      D’où vient le nombre 481 ?

      L’équation algébrique ne comportes que les expressions: a, b et c. Ce sont des proportions et pas des valeurs.

      merci pour votre réponse.

      1. Répondre
        Giuseppe - 6 décembre 2019

        Grand.Martouf, confidavo che sostituisse i valori della terna di Pitagora e di conseguenza ne sarebbe venuto a capo;
        in ogni caso: (1/9+1/16)-1/25=
        [(3600/9+3600/16)-3600/25]/3600=
        [(400+225)-144]/3600 =
        481/3600=0,133611111, poi ,estratta la radice positiva si ottiene 0,365528536
        infine moltiplicando per 10^3=1000 si ottiene il risultato inatteso del tempo annuale di rivoluzione della Terra intorno al Sole ; tempo che non dipende
        dall’osservazione umana ma dal principio generatore del Cosmo.
        Per ora mi fermo qui ma Pitagora ,che fu il Maestro degli antichi greci ci ha suggerito altri risultati della sua indagine in Egitto ma ne riparlerei nella prossima puntata.
        Cordialità, da Joseph
        6 dicembre 2019

      2. Répondre
        joseph - 31 mai 2022

        M.Martouf,
        il 6/12/2019, avevo suggerito che nell’antichità la cultura Mesopotamica avesse trovato come calcolare la durata(il Tempo) necessaria alla Terra a percorrere il percorso ellittico nell0 Spazio intorno al Sole.
        In successive ricerche anche qui sul WEB sono venuto a sapere che ,per varie ragioni l’ellisse percorsa è variabile nel suo sviluppo a causa delle perturbazioni delle masse dei Pianeti che transitano in tempi diversi rispetto alla Terra.
        Considerando altre informazioni che vengono dagli stessi Numeri ho individuato questo algoritmo pitagorico che spiega meglio del precedente la durata del tempo T annuale.
        Ecco la formula: T=[(a^2+b^3)c+1/b] dove a-b-c sono i numeri della tripla pitagorica e dunque :T=( 9+64)5 +1/4= (5*73)+0,25=365,25.( dove 5 e 73 sono numeri primi)
        E qui comprendiamo che gli antichi avevano confrontato il valore numerico del Tempo osservato con quello calcolato Tc in modo tale che
        [Tm-Tc=0]
        Ma ora si deve spiegare come compensarono il valore frazionario (0,25) perché ne risultasse assorbito in un numero unitario (1) da aggiungere ad un mese dell’anno di un quadriennio.
        Calcolarono un ciclo quadriennale: 4(365,25)=1461=(1460+1) che significa >>[3*365 + 1*366)]=1461 che è formato da due numeri primi (3*487) sicché dobbiamo credere a Pitagora quando insegna ai suoi accademici che il Numero costruisce il Cosmo e lo regola in un Ordine che l’Umanità non può sconvolgere con le sue Teorie .
        Cordialità.
        li, 31/5/2022

        1. Répondre
          Martouf - 2 juin 2022

          Merci pour pour ce passionnant commentaire.
          Ça me fait beaucoup penser à la manière dont est conçue la machine d’anticythère !
          C’est vrai que les nombres construisent l’harmonie du cosmos.

          Je remets ici la traduction en français de votre commentaire:

          M.Martouf,
          le 6/12/2019, j’avais suggéré que dans l’antiquité la culture mésopotamienne avait trouvé comment calculer la durée (Temps) nécessaire à la Terre pour parcourir la trajectoire elliptique dans l’espace autour du Soleil.
          Lors de recherches ultérieures, également ici sur le WEB, j’ai appris que, pour diverses raisons, l’ellipse parcourue est variable dans son développement en raison des perturbations des masses des planètes qui transitent à des moments différents par rapport à la Terre.
          En considérant d’autres informations provenant des Nombres eux-mêmes, j’ai trouvé cet algorithme pythagoricien qui explique mieux que le précédent la durée T par année.
          Voici la formule : T=[(a^2+b^3)c+1/b] où a-b-c sont les nombres du triplet de Pythagore et donc :T=( 9+64)5 +1/4= (5*73)+0.25=365.25.( où 5 et 73 sont des nombres premiers)
          Et nous comprenons ici que les anciens avaient comparé la valeur numérique du Temps observé avec celle du Tc calculé de telle sorte que
          [Tm-Tc=0].
          Mais il faut maintenant expliquer comment ils ont compensé la valeur fractionnelle (0,25) pour qu’elle soit absorbée dans un nombre unitaire (1) à ajouter à un mois de l’année d’une période de quatre ans.
          Ils ont calculé un cycle de quatre ans : 4(365,25)=1461=(1460+1) ce qui signifie >>[3*365 + 1*366)]=1461 qui est formé par deux nombres premiers (3*487) de sorte qu’il faut croire Pythagore lorsqu’il enseigne à ses académiciens que le Nombre construit le Cosmos et le règle dans un Ordre que l’Humanité ne peut bouleverser avec ses Théories.
          Cordialement vôtre.
          là, 31/5/2022

  7. Répondre
    joseph - 6 décembre 2019

    Object:Racine 2
    Ottimo Savant,√
    pensavi di aver detto tutto sulla √2 =1,414…….?
    Ebbene, gli antichi sapevano tutto di essa.
    E la cosa che mi ha incuriosito è che mentre stavo esaminando l’equazione di Pitagora nella forma a^2+(a+1)^2-c^2=0 ove c=5; ho osservato che,
    tale equazione ,sviluppata ed ordinata offre sia [ a^2+a-12]=0 le cui radici sono ; 3 et -4.
    sia la [ a^2-2a – 3=0] le cui radici sono ; 3 et -1;
    sottraendo algebricamente tali funzioni/equazioni si ottiene la [x^2-2x-1]=0
    e ti meraviglieresti se scoprissi che le radici sono ; (-2,414..) et (+ 0,414..)?
    la semi-differenza fra le radici = ( 1/2[ (0,414-(-2,414)]=1/2(2,828..)= √2=1,414..
    Sono persuaso che da oggi non si potrà affermare che tale radice passa solo per una mera estrazione di radice ma essa è scolpita nella funzione che rassomiglia tanto a quella di Phi per la successione dei segni negativi.( x^2-x-1=0).
    6 dicembre 2019
    Turin

    1. Répondre
      Martouf - 6 décembre 2019

      Non, je n’ai pas tout dit sur la √2 dans cet article.
      Ce nombre, et cette proportion est aussi utilisée dans ce qu’on appelle la “proportion d’argent” et/ou “le nombre d’argent”.
      => https://it.wikipedia.org/wiki/Sezione_argentea

      On a des propriétés similaire d’avec le nombre d’or.

      La proportion d’argent est aussi la base de nos feuilles de papier A4.
      (et au passage, la heuteur de la feuille de papier A4 fait 1 pied romain !)

  8. Répondre
    Giuseppe - 6 décembre 2019

    Martouf,
    dalla risposta che mi offri deduco che potresti non essere entrato nel merito della mia proposta d’indagine; A ME SEMBRE SIA RILEVANTE osservare che √2 si ricavi “anche” per mezzo della funzione che ho indicato.
    Se lo ritieni opportuno ti manderei il file del grafico della Funzione e i risultati che se ne traggono.Naturalmente mi dovresti indicare la tua mail.
    Cordialità; nell’occasione unirei anche altre considerazioni che devono avere guidato i
    Magi babilonesi e Sumeri per costruire La Methode di misura del Tempo e dello Spazio .
    Joseph(6/12/19)

  9. Répondre

    […] déjà publié pas mal d’articles sur quelques idées liées aux pyramides. Notamment mes recherches sur la géométrie sacrée…. sur les pierres moulées […]

  10. Répondre

    […] Les dimensions de la lune sont aussi bien en rapport avec les dimensions de la Terre selon la géométrie sacrée… […]

  11. Répondre
    boudaille - 10 juin 2020

    Bonjour
    et un grand MERCI pour ce travail, qui me permet de faire encore d’autres liens…

    Je suis en train d’écrire un bouquin sur tout ça, en version symbolisme analogique, et incitation à la créativité… Et comme je vais vous citer pour quelques infos, je souhaitais y intégrer une image aussi, celle de la quadrature du cercle relativement à la grande pyramide (avec 4Pi = rPhi), seriez-vous ok pour cela, ce serait un honneur pour moi 😉

    1. Répondre
      Martouf - 30 juin 2020

      Merci pour votre commentaire encourageant 🙂
      Oui, vous pouvez utiliser l’image si vous me citer.

      Bonne journée ensoleillée… et redite moi quand votre livre sera publié !

  12. Répondre

    […] → ça crée. Comme la géométrie sacrée est de la géométrique qui crée… et la magie sacré = l'âme agit, ça […]

  13. Répondre

    […] Le sol de la chambre est un double carré, forme qui ouvre sur pleins de notions en géométrie sacrée. […]

  14. Répondre

    […] c'est au travers de la géométrie sacrée que j'avance. Et que je […]

  15. Répondre
    tojini - 12 juin 2021

    The last phase of lifting lockdown, initially wanted to happen no sooner than 21 June, would see all lawful cutoff points on friendly contact eliminated.

    토토사이트추천 https://tojini.com

  16. Répondre

    […] la géométrie sacrée, le centre ⵙ symbolise le feu du […]

  17. Répondre
    fanny - 10 juillet 2021

    bonjour,
    merci pour cette super vidéo qui me permet d’accéder à un monde qui reste souvent hermétique pour moi … Pouvez-vous m’indiquer la source de la représentation géométrique des transits de vénus ( pentagone + spirale) qui est dans la vidéo ? j’aimerais creuser le sujet
    merci d’avance

    1. Répondre
      Martouf - 2 août 2021

      Bonjour,

      Je ne me souviens plus de la source de ces images… Il me semble que j’avais aussi inclus cette image dans mon article sur le nombre d’or…
      https://martouf.ch/2018/07/le-nombre-dor-base-systeme-unite-mesure/

      Donc peut être que j’y avais indiqué la source ?
      Sinon faut faire une recherche google image…

      Bonne journée

  18. Répondre
    tojini - 21 août 2021

    Talking at the White House, Mr Biden said the US had protected 13,000 individuals to date in “one of the biggest, most troublesome transports ever”.

    https://tojini.com

  19. Répondre
    totogaja - 17 septembre 2021

    I visit day-to-day some web pages and websites to
    read content, however this blog offers feature based content.

  20. Répondre
    joseph - 17 septembre 2021

    Monsieur Martouf,
    il 6/12/2019, abbiamo fatto cenno alla misura del Tempo nell’antichità ed io mi ero sbilanciato a trovare una relazione nella scienza pitagorica .
    Naturalmente il risultato cui pervenivo non era esatto perché come si usa dire,” se l’ipotesi è infondata anche i risultati lo saranno.
    Ma da allora ho fatto dei progressi in alcune ricerche che mi hanno portato alla formula che è in vigore dal tempo del Calendario Gregoriano ad oggi.
    Di che si tratta?
    Si potrà ancora una volta essere scettici su come sia stata indagata l’ipotesi che ha prodotto la formula che segue:
    T = [(a^2+b^2)c]+(a-1)^(-2) =365,25; dove a,b,c sono le lettere corrispondenti ai lati del triangolo retto inscritto nel cerchio di diametro (c=5).
    Va da sé che tale valore del Tempo si può scrivere considerando i numeri primi che lo generano: T=(5*73)+(1/2)^2=365+0,25=365,25.
    Naturalmente dobbiamo considerare anche il periodo quadriennale del tempo in cui la Terra compie le sue orbite ellittiche che sommano a Tt= 3*365+366= 1461 > =(3*487 che sono ancora due numeri primi.
    Possiamo certamente sostenere l’enunciato pitagorico”il Numero costruisce il Cosmo” ma anche sul Tempo.
    Cordialità.
    Joseph ,li 17 settembre 2021
    )

  21. Répondre
    토토커뮤니티 - 26 septembre 2021

    I’ve been using WordPress on a number of websites for about a year and am worried about switching to another platform. I have heard good things about 토토커뮤니티
    . Is there a way I can transfer all my wordpress content into it? Any help would be really appreciated!
    https://mtygy.com/

  22. Répondre
    xiaomi maroc - 18 octobre 2021

    c’est ce qui aide le cerveau a mieux fonctionner et raisonner c’est grâce à la résolution des opérations mathématiques

  23. Répondre
    Gartenbau - 13 février 2022

    Werthmüller Gartenbau – Gärten, die bezaubern und verzaubern.
    Die Traumlandschaft vor der eigenen Tür, ein Ort zum Besinnen und Innehalten. Sorgfältig geplant, mit Liebe angelegt, umsichtig gepflegt und gehegt: So wird es perfekt. Gartenbau

  24. Répondre
    asad - 19 février 2022

    Wow, you seem to be very knowledgable about this kind of topics.’~,-: Umzug Zürich

  25. Répondre
    바카라 사이트 - 19 février 2022

    Nice to be visiting your blog once more, it has been months for me. Well this article that ive been waited for therefore long. i want this article to finish my assignment within the faculty, and it has same topic together with your article. Thanks, nice share. 바카라 사이트

  26. Répondre
    jonny rick - 19 février 2022

    Overall, politicians are split on the issue of whether Twitter is more for business or personal use. The first thing is the fact that you can build up quite a large following of people. Umzugsfirma Zürich

  27. Répondre
    naila - 20 février 2022

    It proved to be Very helpful to me and I am sure to all the commentators here! 먹튀검증

  28. Répondre
    Ghyslain Clement - 11 novembre 2023

    Bonjour.
    Merci pour cet article qui s’il ne m’a pas appris la majorité des concepts utilisés et intéressant pour la prise en compte des différentes périodes visitées et mets en valeur que le savoir ne date pas d’hier ni des grecs ni des romains mais de bien avant. Concernant le mètre et son usage. Il est intéressant de savoir que la définition exacte du mètre qui n’est plus basée sur un concept terrestre actuellement mais sur un concept universel qui est la vitesse de la lumière et donc une fréquence — J’en reviens à ce que je voulais dire — a été finalisé en 1797. la mesure du mètre était d’actualité avant la révolution française mais les savants n’arrivaient pas à se mettre d’accord puis il y a eu la révolution et la campagne d’Égypte et tout ce qui a été fait avant a été refoulé pour une refonte complète de la définition du mètre et de sa valeur étalon. Peut-on dire que les égyptologues de cette période ont ramenés dans leur valise des concepts sinon inconnus du moins mal compris avant, il n’y a qu’un pas que j’ai sauté depuis longtemps. Le calcul du mètre a toujours été connu mais la science et les scientifiques ont pris le pas sur les bâtisseurs avec l’évolution des connaissances mais cela reste lié étroitement de nos jours. Je continue mes pérégrinations sur votre site. Bonne continuation.

    1. Répondre
      Martouf - 3 mai 2024

      Merci pour votre commentaire et merci de partager vos réflexions.

      Je me pose le même genre de questions à propos de l’origine du mètre.
      La définition actuelle a été encore une foi retouchée en 2019. On a vraiment une définition circulaire, le mètre dépend d’une vitesse exprimée en mètre/seconde !!!

      J’ai écrit un article qui fait une chronologie de tout ce qui est lié à la mesure des la terre et à l’idée de création d’une unité de mesure universelle.
      On retrouve que le mètre n’est pas issus de la révolution français, mais que 150 ans avant il y avait déjà des gens qui ont invention une mesure universelle avec une valeur similaire.

      Généralement on se base sur la longueur du pendule qui bat la seconde comme définition du mètre.

      Chose étrange, c’est que beaucoup de gens qui se sont intéressés à créer une unité de mesure universelle sont en lien avec la pyramide de Khéops !!!

      Le détail par ici:

      https://martouf.ch/2021/03/le-metre-une-matrice-universelle-a-lorigine-mysterieuse/

  29. Répondre
    Giuseppe Luciano - 11 novembre 2023

    giuseppe ferrero(li, 11/11/23

    Storicamente è stata controversa la questione dell’unità di misura ancor prima della civiltà degli Egizi.Tuttavia essi lasciarono traccia di quella unità di misura che consentiva di determinare l’Area del triangolo retto di lati 1,2,√5 →A‛= (1*2)/2=1 (cubito^2);
    che è pari a 1/6 di quello della tripla pitagorica 3-4-5→A‟=(3*4)/2=6
    Il cubito reale che era adottato per la costruzione dell’architettura regale del Faraone era dato → (1+2+√5)/10= 0,5236.
    Erodoto nella sua opera storiografica “Le Storie” ci dice nel libro II,(136-138) che i propilei sono adornati di Figure alte sei cubiti di altezza, degne di essere nominate.Fatti due conti significa che tali Figure dipinte erano alte ( 6* 0,5236)=𝝿 =3,1416..(mt )
    M rimane la questione quanto doveva valere il metro rispetto
    La spedizione in Egitto di Napoleone non venne a capo della questione che pure era a portata del pensiero scientifico dell’epoca.
    In Generale ,inoltre suggerirei che essi non seppero comprendere che il cubito ordinario era il reciproco di √5→ 1/√5)0,4472…ed dunque il prodotto →P= 1 cubito ordinario x √5= 1 mt.
    Ma anche 𝞿*(1/𝞿) =1 ed anche( 𝞿-1/𝞿)=1
    Questo vuol dire che l’unità lineare di misura deve solo soddisfare
    il rapporto aureo sia con il prodotto sia con la differenza.
    Cordialità
    Joseph

  30. Répondre
    K9 - 25 août 2024

    Salut à tous…

    “nombres courants en géométrie sacrée”

    recalculés et triés

    linux> units -o “%5.8f” -t “(1 + sqrt(5)) / 2”
    1.61803399
    linux> phi=` units -o “%5.8f” -t “(1 + sqrt(5)) / 2″`
    linux> echo $phi
    1.61803399

    0.52355866 pi – 1.61803399^(2)
    0.52359878 pi / 6
    0.52360680 (1 + 2 + sqrt(5)) / 10
    0.52360680 1.61803399^(2) / 5
    0.61803399 1.61803399^(-1)
    0.78539816 pi / 4
    0.86602540 cos(pi/6)
    1.27000000 50 in m
    1.27201965 1.61803399^(1/2)
    1.41421356 sqrt(2)
    1.61803399 1.61803399
    1.73205081 sqrt(3)
    2.23606798 sqrt(5)
    2.61799388 (5/6) pi
    2.61803399 1.61803399^(2)
    2.71803399 1.61803399^(2)+(1/10)
    2.71828183 exp(1)
    3.14159265 pi

    code:
    https://github.com/FourNinesFineK9/utilities/blob/main/sacred-geometry/martouf-1.notes

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Remonter