Le nombre d’or comme base d’un système d’unité de mesure

Aujourd’hui, je vais te parler du nombre d’or.

L’article wikipedia sur le Nombre d’Or étant déjà jugé comme un bon article, pour éviter de réinventer la roue, il est déjà possible de se référer à cet article , mais j’avais envie de présenter ce nombre à ma manière. De mettre en avant ce qui m’intéresse moi dans ce nombre. C’est à dire surtout une structure fractale du monde qui me questionne. Et surtout, ce qui ne passe pas sur wikipedia, l’utilisation du nombre d’or comme système de mesure universel, très ancien, et même liée au mètre !

Cet article est une base amenée à évoluer, tellement le sujet a du potentiel à se développer.

Le nombre d’or est fréquemment représenté par la lettre grecque Phi, Φ, φ, (Suivant la fonte utilisée on voit 2 caractères différents ici)

Définition du nombre d’or

Le nombre d’or est une proportion, définie initialement en géométrie comme l’unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b).

C’est à dire lorsque (a+b)/a = a/b

nombre d'or en ligne

Voici la même définition avec d’autres mots: Trois points alignés, déterminant deux segments forment une section dorée (un rapport égal à Phi), s’il y a de la petite partie à la grande, le même rapport que de la grande au tout.

Le nombre d’or est le seul rapport qui met en résonance la partie avec le tout. On peut donc le voir comme étant une résonance (fractale) entre la créature et son créateur.

C’est pour cette raison que ce rapport est souvent appelé: La divine proportion.

On peut construire ce rapport dans un rectangle d’or. (le format carte de crédit !)

construction du rectangle d or

La construction s’effectue en construisant un carré. Puis en piquant un point au milieu du côté du carré. Là on place son compas. On l’ouvre sur la distance au coin et on obtient ainsi une longueur de côté qui permet de faire un rectangle d’or.

Valeur du nombre d’Or

Les anciens, et les visuels, préfèrent faire des mathématiques à travers la géométrie. Il est possible de faire de nombreuses choses acec juste une équerre et un compas. Mais le monde actuel préfère rendre les mathématiques abstraites en usant et abusant d’algèbre. Qui est capable de se représenter ce qu’est une racine carrée ? Et bien c’est tout simplement la longueur de la diagonale d’un carré !

Donc observons le nombre d’or dans une vision algébrique des mathématiques.

Le nombre d’or φ est irrationnel. Il est l’unique solution positive de l’équation x² = x + 1. Il vaut exactement (1+√5)/2

Soit environ 1.6180339887…

Un nombre irrationnel est un nombre qu’il n’est pas possible de réduire en ratio, soit en fraction. Contrairement à π, φ n’est pas un nombre transcendant (un nombre transcendant n’est racine d’aucune équation polynomiale)

φ est un rapport naturellement présent dans de nombreuses constructions géométriques.

Le pentagone, et l’étoile à 5 branches est une source sûre pour trouver le nombre d’or.
Observe, on y voit un grand triangle isocèle qui point p2 depuis p5 et p3. On voit également le même triangle à une échelle différente. C’est la définition d’une fractale, l’auto-similarité. C’est le petit triangle isocèle qui point p2 et fait avec la ligne p4 – p1 qui coupe le grand triangle isocèle. En bref, une des branche de l’étoile.

Chaque branche de l’étoile est en fait un triangle d’or. Si l’on divise la longueur du grand côté par le petit on obtient le nombre d’or φ.

On a donc ici un rapport φ dans la construction des triangles d’or. Mais il y a 2 niveaux de triangle. Et si l’on compare les longueurs des côtés de ces triangles d’une échelle à l’autre, c’est aussi φ qui ressort !

nombre d'or pentagramme

Équations remarquables

On peut déduire plusieurs particularités de l’équation  x² = x + 1 dont la solution et φ et vaut (1+√5)/2:

φ² = φ + 1 ≈ 2.6180339887

1/φ = φ – 1 ≈ 0.6180339887

√5 = φ + 1/φ ≈ 1.6180339887 + 0.6180339887 ≈ 2.236067977

C’est marrant, on peut mélanger les multiplications et les additions !!  … un peu comme le but des logarithme qui nous permet avec des additions de gérer des multiplications. (le principe de la règle à calcul)

Progression géométrique et arithmétique

Grâce aux équations remarquables ci-dessus, le nombre d’or est certainement le seul nombre pour lequel on peut faire coïncider une progression géométrique et une progression arithmétique.

x-3 x-2 x-1 x0 x1 x3
1/φ3 1/φ² 1/φ 1 φ φ² φ3
0.235 0.382 0.618 1 1.618 2.618 4.236

La progression géométrique s’obtient en augmentant la puissance (comme sur l’exemple théorique de la première ligne. La deuxième ligne montrant concrètement ce que ça donne dans le cas de Phi) Le résultat approché est indiqué en notation à virgule sur la troisième ligne.

La progression arithmétique s’obtient en additionnant deux nombres successifs de la suite pour trouver le suivant.

Par exemple: 0.618 + 1 = 1.618 → 1.618 + 1 = 2.618 … etc.

Attention, sur la 3ème ligne se sont des valeurs approchées, l’exemple d’addition marche bien, car c’est le moment de la suite où le chiffre 1 intervient et qu’il est donc facile de l’additionner. Pour les autres il faut utiliser la valeur exacte.

Suite de Fibonacci

La suite de Fibonacci a été découverte par Léonardo Fibonacci en étudiant la croissance des générations de lapins.

La suite de Fibonacci est une suite d’entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Elle commence généralement par les termes 0 et 1 (parfois 1 et 1) et ses premiers termes sont: 0, 1, 1, 2, 3, 5, 8, 13, 21, etc.

Les quotients de deux termes consécutifs de la suite de Fibonacci sont les meilleures approximations du nombre d’or.

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711

C’est à partir du quotient de 144/89 que l’approximation atteint la précision qui est couramment utilisée du nombre d’or.

144/89 = 1.617977

Ainsi, dans la nature, un monde fini et concret et pas un monde mathématique parfait, c’est une approximation du nombre d’or qui est utilisée très souvent. La meilleure approximation est la suite de Fibonacci.
(En d’autre mot, par exemple un écran d’ordinateur un a nombre fini de pixel, ainsi un design doit avoir un nombre entier de pixels, il n’est pas possible de faire des fractions de pixels. Donc pour afficher un idéal mathématique, on fait une approximation Dans la nature c’est pareil.)

La spirale de Fibonacci

En construisant une structure faite uniquement de lignes droites (Très masculines), il est possible de construire une superbe spirale avec une belle courbe (très féminine).
Il s’agit à la base d’un rectangle d’or qui est découpé en un carré et ….. un autre rectangle d’or ! (On reconnait ici le côté fractal du nombre d’or !)

Il suffit de faire un cercle au compas dans chaque carré. (de la longueur du côté du carré)… et voilà, il y a une superbe spirale qui est ainsi construite.

spirale fibonacci

Ça se semble toujours incroyable qu’on puisse faire des cercles qui correspondent chacun à leur échelle et que pouf… à la jonction ça passe si harmonieusement !!  C’est la magie des fractales…

GoldenSpiralLogarithmic_color_in

La spirale d’or est très utilisée dans la nature.

nombre d'or spirale nombre d'or spirale

Le nombre d’or en phyllotaxie

La nature utilise fréquemment la suite de Fibonacci comme base de construction. (pétale, pomme de pin, etc..)

On parle de phyllotaxie.  Il y a plein d’exemples sur cette page.

Il faut se souvenir que le nombre d’or φ est un rapport. Donc au lieu de faire des rapports entre des longueurs des droites comme on l’a fait jusqu’à présent. On va ici faire un rapport sur des bouts de circonférence de cercle.

Donc la circonférence c = a + b

a/b = c/a = φ

(Donc le rapport entre la grande portion de la circonférence et la petite portion de la circonférence qui reste est égale au rapport entre la circonférence complète et la grande partie de la circonférence .. et la seule valeur de rapport possible, c’est φ)

On obtient donc un angle d’or.

Si l’on détermine l’angle en degré qui correspond on arrive à ≈ 137,5°  (C’est donc l’angle en rouge)

angle d'or

Les feuilles se positionnent très souvent de cette manière. Tous les 137° une nouvelle feuille pousse…
(Il semble que ça marche avec 80% des plantes. Selon p.74 de: Jean-François Morot-Gaudry, Biologie végétale : Croissance et développement, Dunod, )


phyllotaxie nombre d'or

Sur cette pomme de pin, on observe qu’il y a un nombre de spirales qui tournent dans un sens (rouge) et un nombre dans l’autre (bleu). Le nombre de spirale dans un sens et dans l’autre est tombe toujours sur une suite de 2 nombres consécutifs de la suite de Fibonacci.

(En 1968 le mathématicien Alfred Brosseau a observé 4290 de pommes de pin et conclu que c’était vrai à 98.2%. Le botaniste Roger V. Jean a refait une telle étude en 1992 avec plus de 12750 pommes de pins de différents genres et il est arrivé à 92% de pives arrangées ainsi. Source: p132 du livre: Le nombre d’or: le langage mathématique de la beauté )

Phyllotaxie nombre d'or pomme de pin

Le nombre d’or en astronomie

Le nombre d’or semble aussi utilisé dans l’agencement des planètes !

En effet, c’est étonnant. Si l’on divise le nombre de jours (terrestres) que la Terre met pour faire sa révolution (sidérale) autour du soleil, par le nombre de jours (terrestres) que Vénus met pour faire sa révolution (sidérale), on obtient comme résultat: le nombre d’or φ (à 99.53%).

Si t’as pas compris la phrase ci-dessus, je fais en bref: le temps que met la terre pour faire un tour autour du soleil / le temps que met vénus pour faire un tour autour du soleil = φ.

J’ai tenté de faire le même calcul avec les autres planètes… mais ça marche pas !
(Mais c’est quand même intéressant. On a une valeur qui est dans une fourchette assez précise. Il semble y avoir une progression régulière. Il y a pourtant un bug, un grand saut dans cette progression entre mars et jupiter. Comme il y a là une ceinture d’astéroïde, je me dis qu’il y avait peut être là une ancienne planète détruite et que si on l’incluait on resterai dans la fourchette que j’ai découverte là…. à creuser… mais pas maintenant)

nombre d'or rapport révolution sidérale planètes

Je suis persuadé que l’on trouve encore le nombre d’or dans beaucoup d’endroits en astronomie. Ne serait que les galaxies en spirale ? .. C’est une spirale d’or ? Il y a tout un débat là dessus… je te laisser chercher si ça t’intéresse…

Comment construire à base du nombre d’or

Le nombre d’or est souvent utilisé en géométrie sacrée. Voici quelques exemples…

Plus haut on a déjà vu la construction du rectangle d’or.

Voici des petits tuto de construction géométrique pour utiliser le nombre d’or φ. Le pentagone contient naturellement en lui tout ce qu’il faut pour avoir le nombre d’or inscrit plusieurs fois sous plusieurs forme.

dessiner un pentagone nombre d'or

La mandorle est aussi une figure fréquente dans la géométrie sacrée. On peut la construire en la calibrant sur le nombre d’or.
nombre or mandorle crop circle

Unité de mesures basées sur le nombre d’or

Il existe plusieurs manière de faire des systèmes de mesures dit « universels ».

Le mètre

De nos jours, on utilise majoritairement le système métrique et le système international d’unité qui en découle. On est habitué aux rapports en base 10 entre les différents « niveau » des unités. On a même donnée des noms aux préfixe des unités qui sont des puissance multiple de 3… (ça parait hyper compliqué dit comme ça… mais c’est simple)

Ce sont les fameux: kilo, Méga, Giga…. utilisé pour 1000, million, milliard…. et en symétrie pour ce qui est petit: milli, micro, nano, femto, ato..   mille fois plus petit que 1, un million de fois plus petit… etc..  (donc la nano technologie, c’est ce qui est 1 milliard de fois plus petit que l’unité métrique)

Les rapports sont donc simples, car notre système de numération est en base 10. (et celui de ordinateur en base 2..)

Bon une fois qu’on sait diviser un mètre en millimètre…. ou le multiplier en kilomètre…  Il ne reste plus qu’à savoir quelle est la longueur d’un mètre.

Alors on défini le mètre comme étant la 10 millionièmes part du quart du méridien terrestre.
(Donc du quart de la circonférence de la terre qui passe par les pôles. Car dans l’autre sens c’est pas pareil et en fait la définition du méridien a changée depuis !)définition du mètre

La légende dit que c’est lors de la révolution française que l’on a voulu se débarrasser des unités de mesures anciennes basées sur la longueurs des pieds et des coudes des rois et adopté un étalons de mesure universel donc basé sur la taille de la Terre ce qui ainsi met sur un pied d’égalité tous les habitants de la planète.

Je dis que c’est une légende, car plus je creuse l’histoire, plus je découvre qu’en fait c’est pas tout à fait exact ! En effet, c’est bien lors de la révolution française qu’on a adopté massivement cette unité de mesure et que Napoléon s’est chargé de la diffuser par la force dans toute l’Europe.

Mais plus je me document, je vérifie et je mesure des lieux anciens, plus j’observe que le mètre était déjà largement connu avant la révolution française !

De plus, la mesure de la planète Terre, donc en racine grecque La « géo-métrie » semble se faire depuis des temps très anciens. On se souvient d’Eratosthène qui a mesuré la terre il y a plus de 2000 ans, avec une erreur de 1%.

Et il semble que l’idée d’utiliser la mesure de la Terre comme unité de mesure est très ancienne aussi.

En 1780, Alexis-Jean-Pierre Paucton disait déjà dans son Traité de Métrologie:

« Je prouve que les Anciens avoient un étalon naturel de mesure, pris dans la grandeur d’un degré du méridien, & que dès les temps ses plus reculés, à remonter même avant la fondation de Ninive, de Babylone & des Pyramides d’Egypte, la circonférence de la Terre avoit été mesurée aussi exactement qu’elle l’a été dans ce siécle ; démontre que cet étalon immatriculé dans la nature & de la valeur de la quatre-cent-millieme partie d’un degré du méridien , étoit universel & commun à l’Asie, à l’Afrique & à l’Europe, à quelques exceptions près ; qu’il étoit celui des Perses, des Arabes, des Juifs, des Egyptiens, des Espagnols qui l’ont conservé jusqu’à ce jour presque dans son intégrité, des Gaulois , des Bretons & des Germains ou Allemands, chez qui on le retrouve encore aujourd’hui dans la plupart des Villes les plus considérables ; compare , d’après les rapports donnés par les Ecrivains, cette Mesure universelle aux nôtres & aux autres Mesures particulières de l’Antiquité, qui font les Mesures Romaines, les Mesures Grecques Olympiques, les Mesures Grecques Pythiques & Maríeilloises qui sont encore en uíàge aujourd’hui en plusieurs Villes de la côte de France qui confine à la Méditerranée, & nommément à Marseille, à Gênes & à Montpellier, & enfin les Mesures des Tongres ou des Bataves, qu’on retrouve également dans le Brabant, la Hollande & ailleurs. »

A méditer sur l’histoire officielle…
… et si ça t’intrigue, fait comme moi, va voir la pierre angulaire qui est dans le sol de la Cathédrale de Fribourg... elle fait bien 1m de diagonale !
… Et bien plus loins dans le passé on trouve le disque de Nebra qui fait 1m de circonférence et Stonehenge qui fait 100m de circonférence….

Bon.. ici n’est pas l’objet de mon article, donc on va revenir au nombre d’or, et je ferai un prochain article sur l’histoire du mètre.

Donc si l’on est habitué au système décimal pour réalisé une division des échelles de l’unité de mesure. On peut aussi faire autrement.

La canne des bâtisseurs de cathédrale

Les bâtisseurs de cathédrale utilisaient un système basé sur le nombre d’or pour définir les unités de longueurs de base:canne des batisseurs de cathedrale

  • La paume  → 34 lignes
  • La palme → 55 lignes
  • L’empan → 89 lignes
  • Le pied → 144 lignes
  • La coudée →  233 lignes

Voici une canne des bâtisseurs pour mémoriser la longueur de ces unités de longueurs.

Ces différent noms correspondent aux rapports de longueur entre différentes partie d’une étoile à 5 branches inscrite dans un pentagone.

Comme on l’a vu plus haut, cette géométrie contient intrinsèquement le nombre d’or à de multiples endroits. On peut aisément observe aussi le changement d’échelle fractal qui est possible avec l’étoile à l’intérieur de l’étoile…. (mais inversée…)

Une bonne approximation pour réaliser une canne des bâtisseurs, est d’utiliser la suite de Fibonacci. Ainsi à chacune des unités de mesure correspond un nombre de la suite de Fibonnacci. Ce nombre peut représenter des lignes.

Ainsi on arrive à faire correspondre des rapports idéaux basées sur le nombre d’or, et les réaliser concrètement grâce à une addition d’une unité des base qui est la ligne. Mais il faut se rendre compte que la suite de Fibonacci est une approximation. On trouve beaucoup d’incompréhension chez les gens qui cherchent à calculer ces unités de la façon moderne sans avoir compris l’idée des rapports du nombre d’or.
(Ils cherchent à arriver aux rapport en faisant des additions de lignes basées sur le grain d’orge sensé faire 4 lignes)

Voici une page web qui fait les calculs à propos de ces unités de mesures basées sur la suite de Fibonnaci.

unité basée sur le nombre d'or paume palme empan pied coudee

unite_nombre_dor paume palme empan coudée pied

Pourquoi est-ce que ces rapports de longueur portent des noms de partie du corps ?

Il est vrai que c’est pratique dans la vie de tous les jours de mesurer un pied ou une coudée. On l’a toujours sur soi. Ça évite d’être coincé car on a oublié son double mètre !

Personnellement, je m’étonne de voir que, hormis le pieds qui est sur une autre partie du corps, le système de longueurs colle passablement bien avec les rapports de proportion.

Quand on voit ci-dessus que le nombre d’or est présent partout dans la nature. Est-ce que finalement le corps humain ne serait-il pas lui même basée sur le nombre d’or ?

C’est aussi l’avis exprimé par Léonard de Vinci avec l’homme de Vitruve, qui exprime l’hommme aux proportions parfaite qui s’inscrit parfaitement dans les mesures de l’univers. (inscrit dans un carré et un cercle, souvent symbole de la terre et de l’univers.)

C’est aussi ce que l’architecte Le Corbusier avait exprimé avec son Modulor. (Qui est indiqué en hommage sur les ancien billet de 10 francs Suisse)

Il y a tout un débat sur ce sujet.

Je pense qu’il est temps de se questionner sur la légende de la création du mètre pour remplacer des unités de mesures « arbitraire » basées sur les mesures du roi ?
Est-ce que finalement l’origine de ce système ne serait pas beaucoup plus élégant et pas juste calqué sur taille du pied ou du coude du roi ?

Peut être que c’est une dérive à la longue d’individus assoiffé de pouvoir qui ont imposé leur membres comme référence, sans avoir compris le système mathématique et à la mesure de l’Homme en général qui sous-tend ce système ? On parle de la mesure du corps humain de façon statistique.

Je me questionne passablement là dessus ces temps, sans avoir réussi à vraiment prendre le temps de faire des recherches plus poussées. Il y a plein d’études statistiques qu’il serait bon de faire.

J’ai notamment aussi entendu parler de la taille moyenne d’un enfant à la naissance qui est « par hasard » très proche de la taille de la Coudée Royale égyptienne, soit 52,36 cm ! (Il y a un lien entre la coudée royales égyptienne, le mètre et le nombre d’or… j’y reviendrai !)

Et le poids de l’enfant à la naissance qui approche le nombre π en kg ! Soit environ 3.14 kg.

Bon, alors maintenant on a une manière de subdiviser une unité de mesure, mais ça ne nous donne toujours pas l’échelle utilisée.

Que vaut une coudée ?

Il y a une manière simple de faire. C’est de prendre le Roi, de mesurer la longueur de son coude et de calibrer ainsi tout le système sur cette longueur. On peut ainsi se souvenir qu’une Coudée fait 233 lignes et ainsi redéfinir toute les unités de mesure intermédiaire avec leurs correspondance en lignes selon l’approximation de la suite de Fibonacci.

Ça explique peut être pourquoi il y a des coudées locales, et il y a la Coudée Royale.
Mais avec cette technique on voit que le Roi était un peu difforme…. sauf pour la coudée !

Mais on peut aussi baser l’échelle sur un lien entre le corps humain et la taille de la planète !

L’empan

La première fois que j’ai entendu parler de l’empan, c’était quand j’étais ado. Mon grand père m’avait offert les oeuvres de Rablais. J’y ai vu un livre avec un langage aux tournures de phrase très anciennes et aux innombrables notes de bas de page pour expliquer tout le contexte.

Il y avait l’empan comme unité de mesure. J’y ai appris en note de bas de page qu’un empan vaut 20 cm. J’ai trouvé ça très pratique. Depuis j’utilise régulièrement l’empan comme unité de mesure quand je n’ai pas sur moi mon double mètre !

empan humain unité mesure nombre d'or

Et là j’ai rapidement remarqué que 5 empan = 1 mètre.

Donc pour calibrer mon système de coudées, etc… pourquoi ne pas dire qu’un empan, soit 89 lignes = 1/5 de mètre ? Le mètre étant le 10 millionième du quart du méridien terrestre (circonférence)

Et voilà !

=> Là j’entend tout de suite ceux qui me disent…. « C’est pas possible… car le mètre a été inventé à la révolution française ! »

Voilà voilà…. c’est pour ça que j’aimerai creuser cette légende…. Car il y a un faisceaux de faits qui montrent que cette fable ne colle pas. qu’il y avait une connaissance plus ancienne du mètre. Ou du mois, d’une unité de mesure qui a un lien avec la circonférence de la terre et qui fait que « par hasard » on retombe sur la même chose !

Alexis-Jean-Pierre Paucton nous dit bien en 1780 qu’il existe une unité de mesure qui vaut « la valeur de la quatre-cent-millieme partie d’un degré du méridien« . (Il ne dit pas le nom de cette unité !!)

A la page 110, de son Traité de Métrologie, il dit qu’il utilise la grande pyramide de Gizeh comme élément de comparaison pour retrouver les valeurs des unités historique. (Il n’y a pas beaucoup de monument mesurés précisément tout au fil de l’histoire de l’humanité qui existe encore !)

traite metrologie paucton p109

Paucton nous dit que selon Héron d’Alexandrie (Je crois bien que c’est celui-là de Héron !), 1° du méridien terrestre vaut: « 16 2/3 Schenes, 66 2/3 milliaires Egyptiens & Phéniciens, 500 stades, 200000 coudées, 300000 pies philétériens, 360000 pieds Romains, 400000 pieds géométriques, & 533245 1/3 spithames. »

Je m’étonne de voir autant de valeurs rondes. (même les 2/3 sont « ronds »: ex: 16 2/3 => c’est 50/3)
C’est pour « arrondir » et donc montre une imprécision, ou alors justement ça montre bien que le ° de méridien est une unité fondamentale sur laquelle on a construit d’autres unités de mesure ?

Puis il nous dit que « le côté de la base de la grande pyramide d’Egypte pris cinq cents fois (…) » « (…) chacun en particulier est précisément la même mesure d’un degré« .

« D’où je conclus que le côté de la base de la grande pyramide étoit d’un stade juste tel qu’il est défini par Marin de Tyr, par Ptolémée & par Héron. »

traite metrologie paucton p110Donc pour résumer:

Un degré de méridien vaut 500 stades, soit 500 fois le côté de la base de la grande pyramide de Gizeh.
→ le côté de la base de la grande pyramide vaut 1 stade
→ un degré de méridien vaut 500 fois le côté de la grande pyramide.

(On aurait donc construit la grande pyramide sur la base de ce coté qui vaut 1/500 de 1° de méridien ?)

Si on reprend ce qu’il disait au début du livre, alors il doit exister une unité de mesure ancienne qui vaut la 1/400 000 d’un degré de méridien.
→1/400 000 de 500 fois le côté de la grande pyramide. (440 Coudée Royales Egyptienne soit ~230m)

Donc d’après les ~230m, je trouve que cette fameuse unité ancienne vaut 28.75 cm.
C’est dans l’ordre de grandeur de ce qui correspond à un pied. (mais c’est pas le pieds des bâtisseurs qui vaut plutôt ~32.3 cm)

Donc sachant qu’un pied, c’est 144 lignes. Je peux calibrer le reste de mon système de mesure.

Ceci à partir d’un écrit de ~2000 ans repris dans un écrit d’il y a ~200 ans….

A creuser…..

La Coudée Royale Egyptienne

Vu qu’on parlais de coudée, voici un des plus célèbre. Ça nous permettra aussi d’en savoir un peu plus sur le calcul fait ci-dessus en utilisant une taille de pyramide en coudées.

Alors la Coudée Royale Egyptienne vaut entre 52 cm et 54 cm selon ce que l’on peut lire sur wikipedia. C’est la version officielle, basée sur les différents « bout de bois » qui représentent la coudée qui ont été retrouvé.

Les unités de mesure ne sont pas pour moi quelques chose totalement dénué de sens, qui sortent de nulle part. Elles sont souvent très réfléchie. Il y a un sens derrière une unité. C’est un symbole. Ici, c’est une explication mathématique qui a nous permettre de retrouver la définition de la Coudée Royale Egyptienne.

Comme dit plus haut, j’aime bien voir les maths de manière géométrique.

Nous allons ici construire une joli hexagone bien régulier. Depuis que je suis gosse j’aime bien faire ça. C’est surtout depuis que j’ai découvert que c’est tout simple, avec juste un compas.

Il suffit de faire un cercle. De garder le même écartement. (donc le rayon du cercle) et de dessiner des portions d’arc avec le même écartement.
Là on remarque une particularité mathématique, ça me donne exactement 6 parts égales si je coupe ma circonférence avec des tranches de la taille du rayon !

Tout simple de faire un hexagone. Mais quelle lien avec la coudée Royale Egyptienne ?

hexagone

Et bien le lien est simple. Le fameux écartement de compas que j’ai utilisé pour faire mon hexagone me donne 2 choses:

  • L’écartement lui-même, soit une droite entre 2 points. C’est la longueur d’un côté de l’hexagone. (en plus d’être le rayon du cercle)
  • Une portion de circonférence du cercle. Soit 1/6 du cercle.

Et voilà…. la Coudée Royale Egyptienne, c’est cette portion d’arc. Ce sixième de la circonférence d’un cercle.

Comment on calcule la circonférence d’un cercle ?
C = 2 π * le rayon = le diamètre du cercle * π

Donc la Coudée Royale Egyptienne, c’est π/6 fois le diamètre. C’est la partie représentée ici en vert.

Coudée Royale Egyptienne

Ok, bon…  En math géométrique abstraite, on voit bien ce que c’est. Mais pour les gens qui aiment les math avec des chiffres… ça fait quoi π/6 ?=> 0.52359877559….

Ok, mais, 0.523 quoi ?
C’est o.523 fois le diamètre du cercle !! On a un juste un rapport. C’est vrai que c’est pas simple de mesurer quelque chose comme ça. Il faut un lien avec la réalité.

Et si je prenais 1 mètre comme diamètre ? ça me donne donc tout de suite une valeur pour la Coudée Royales Egyptienne en mètre.
Donc la Coudée Royale Egyptienne vaut 0.52359877…. mètre ! 
→ On est bien dans les mesures des bâtons retrouvé qui font entre 52 et 54 cm !

Voilà, c’est très bien. On a retrouvé la valeur théorique de la Coudée Royales égyptienne.

…. mais comme plus haut, j’entends déjà les cris……   mais c’est pas possible… t’as pas le droit de faire ça…. T’es en train de me dire que tu calibres la coudées royale égyptienne sur le mètre !! … donc un truc qui a été utilisées il y a des milliers d’années par une unité inventée il y a 200 ans lors de la révolution française. C’est pas possible !

Ouais, en effet, ça pose un soucis ! C’est pour ça que cette explication n’est pas officiellement admise par l’archéologie, que la page wikipedia n’en parle pas. (Mais il y a un débat sur la page de discussion)

Mais alors pourquoi ça marche ? Certains vous dirons que c’est Dieu…. et d’autres le hasard… (ce qui est assez proche… évoquer le hasard pour tout ce que l’on comprend pas ça ressemble à une religion… alors qu’il est si simple de dire: « Je ne sais pas ». )

Comme dit plus haut. Je ferai bientôt un article là dessus, car il commence à y avoir beaucoup de coïncidences.  Le hasard fait vraiment bien les choses, il place le mètre dans bon nombre d’objets, surtout dans des cathédrales et observatoire astronomique anciens.

Selon le même principe, le pied druidique c’est 1/10 de la circonférence d’un cercle de 1m de diamètre. → soit π/10 en mètre…..  Donc il y a plein d’unités liées au mètre.

One more thing…

Ce n’est pas tout… On est bien ici en train de parler d’unité de mesure basée sur le nombre d’or ! Et bien il se trouve que la Coudée Royale Egyptienne a aussi un lien avec le fameux nombre φ.

On a vu plus haut que la Coudée Royale c’est le bout vert du cercle, soit  π/6. Le reste du cercle, le bout en rouge, vaut donc 5 * π/6.

En nombre ça donne:

5 π/6 ≈ 2.61799387799

Ça te rappelle pas quelques chose écrit tout en haut ?

φ² = φ + 1 ≈ 2.6180339887

En effet, à un cheveu près, c’est pas « exact » ce qui génère de grand débat, la partie rouge du cercle vaut φ².

Si c’est la précision mathématique que l’on cherche, c’est pas parfait. Mais si c’est pour une construction. La différence est minime, quand je dis à un cheveu près…. c’est déjà très gros un cheveu. Là on est à un centième de mm d’écart si l’on se base sur le cercle de 1m !

Liens mathématiques entre le nombre d’or et des nombres « spéciaux »

Cette petite in-exactitude me questionne beaucoup et elle fait aussi couler beaucoup d’encre (ou de pixels) chez les sceptiques.

Il faut quand même dire que l’on mélange là des nombres très spéciaux. Les nombre φ et π sont irrationnels. Il ne se mélangent pas facilement à d’autres. Pire, π est transcendant. Donc réussir à faire quelques chose qui mélange ces deux nombres, c’est peut être juste pas possible ?

Sur un plan philosophique le nombre d’or est souvent vu comme la perfection a atteindre, et les constructions qui en découlent sont généralement réalisées avec une approximation à l’aide de la suite de Fibonacci, car c’est le moyen accessible dans l’imperfection du monde.

Ainsi la coudée royale égyptienne est peut être la meilleure approximation possible du lien enter le π et φ ?

Le problème de la quadrature du cercle est un problème de mathématique qui a occupé les mathématiciens pendant des millénaire. Il s’agit de construire avec les outils du géomètre, un carré de même air, qu’un cercle donné. Pour faire un carré, on a besoin de sa diagonale, et il se trouve que cette diagonale comme je l’ai mentionné plus haut, c’est la racine carrée. Et là il faut trouver la racine carré de π.
Comme π est un nombre transcendantal, et bien il est impossible de réaliser cette opération par une construction géométrique, juste avec un compas et une équerre.

J’ai cherché si il y des liens connus entre ces deux nombres spéciaux. J’ai trouvé un document qui mentionne une solution approximative à 1% près et une à 0.02% près en passant par le nombre i , soit l’unité imaginaire des nombres complexes. Il est intéressant que cette solution fasse intervenir le nombre e ! un autre nombre étrange !

φ² + e² + (i/e)² = π²

Donc effectivement, la Coudée Royale Egyptienne semble vraiment la meilleure approximation de ce lien entre π et φ .

Conclusions

J’ai ouvert beaucoup de portes dans cet article. Le nombre d’or fascine depuis des millénaires, et je crois que ce n’est pas fini.

Je pense qu’il y encore beaucoup à redécouvrir à propos de la compréhension des anciens à propos de ce nombre, de ce rapport que l’on trouve partout dans la nature, et qui semble une référence universelle. Donc c’est bien compréhensible qu’on ai voulu l’utiliser comme base d’unités de mesure.

J’ai l’intuition, qu’il y a encore quelque chose à découvrir autour du mètre. Est-ce que cette unité est naturelle ? Elle est calibrée par rapport à la planète, mais est-ce qu’il y a quelques chose de plus ? Tout comme on a vu qu’il y a un lien fractal entre les triangles dans une étoile à 5 branches. Il y a peut être un lien fractal entre la dimension de la terre et la dimension humaine et de là découlent des unités de mesure naturelle à échelle humaine, comme à échelle planétaire, voir universelles…. ?

C’est en tout cas suggéré par Leonard de Vinci dans son homme de Vitruve…

A méditer.

Da_Vinci_Vitruve_Luc_Viatour

 

One thought on “Le nombre d’or comme base d’un système d’unité de mesure

  1. Répondre

    […] nombre d’or est un nombre particulier qui est le rapport entre la partie et le tout, ceci à plusieurs […]

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *