Liste de la présence du mètre avant son invention officielle

Le mètre est une unité de mesure de longueur qui officiellement a été inventée lors de la révolution française.

La fable nous dit que dans le même ordre d'idée de couper la tête du roi, on se débarrasse des unités de longueurs comme le pied et la coudée par ce qu'on a plus envie d'utiliser des références à l'anatomie d'un roi.

La fable est fausse ! et nie l'évolution de cette idée pendant les siècles précédents

Cette fable est un grand raccourci. Car l'idée d'une unité de mesure universelle était présente avant la révolution, elle faisait partie de demande dans les cahiers de doléance, mais l'idée était bien plus vieille.

Notamment en 1670 Grabriel Mouton proposait d'utiliser la base 10 comme division d'une unité de mesure universelle qu'il appelait virga, (la verge). Cette unité correspond à un millième de la longueur d'une minute d'arc de méridien ~1,8m. (voir mon calculateur pour vérifier)

L'anglais John Wilkins propose à la même période l'adoption d'une mesure universelle (universal measure), d'unités décimales, basée sur le principe d'un pendule battant une seconde, et dont la longueur fondamentale est de 38 pouces prusses (1 prussian inch = 26,15 mm), soit de 993,7 mm (ou 39,25 pouce de Londres). Il publie cette idée en 1668, mais ce n'est que la seconde édition, car tous les exemplaires imprimés de la 1ère ont brulés dans le grand incendie de Londres en 1666.

En 1675, c'est l'italien Tito (Livio) Burattini qui publie un livre nommé "Misura universale" dans lequel il reprend l'idée du pendule comme base universelle d'une mesure universelle. Il traduit "universal measure" par le latin "metro cattolico".

Dans le préface de ce livre, Burattini décrit sa visite de la grande pyramide de Gizeh en 1639 avec John Greaves. Ce dernier était un astronome anglais spécialisé en métrologie ancienne. Graves a publié en 1646 un livre avec ses mesures de la grandes pyramide de Gizeh.

Le physicien Isaac Newton s'est intéressé aux mesures de Graves (et Burattini) dans le but de trouver la valeur de la coudée royale égyptienne. Il était convaincu que les anciens égyptiens avaient déterminé la dimension de la Terre et que la valeur de la coudée pourrait l'aider à déterminer avec précision la circonférence de la Terre.

Tout ceci dans le but d'affiner sa théorie de la gravitation. Malheureusement Newton n'a pas trouvé dans les mesures de Graves ce qu'il cherchait et il a du attendre la mesure d'un degré de méridien effectuée en 1669 par Jean Picard.

Entre 1735 et 1744 Charles Marie de La Condamine mène une expédition à Quito en équateur pour mesurer les 3 premiers degrés de méridien depuis l'équateur et ainsi déterminer la figure de la Terre. Est-elle aplatie aux pôles comme le prétend Newton, ou à l'équateur comme le prétends Descartes ?
Ainsi deux équipes sont envoyées mesurer des méridiens près des pôles et près de l'équateur. Finalement c'est Newton qui avait raison.

Pendant cette expédition, Charles Marie de la Condamine imagine lui aussi l'utilisation d'un étalon universel basé sur un pendule qui bat la seconde. Mais à l'équateur pas n'importe où, à l'équateur.

Cette définition ne sera pas retenue bien que l'idée du pendule sera soutenue par Talleyrand. (bon, lui il préférait la latitude de 45°) (De plus aux USA, Thomas Jefferson était aussi partisan du pendule)

Néanmoins, la mesure du degré de méridien par la Condamine sera utilisée pour déterminer le mètre, vu que l'idée d'extrapoler la mesure de la portion de méridien de Méchain et Delambre pour en trouver le 1/4 du méridien est remis en cause par la découverte que la figure de la Terre, n'est pas une élipsoïde de révolution, mais que chaque méridien a sa mesure propre.

Puis il y a l'abbé Lacaille qui a mesuré entre 1750 et 1754 un bout de méridien en afrique du sud, puis la géodésie de l'ile de france. Il est mandaté après la mort du roi en 1791 pour déterminé le "mètre provisoire" . Ce sera fait en 1793 (plus long de 0,095 mm que le mètre réel) et exprimé en toise du pérou. Il est remplacé par le vrai mètre en 1799. Ironie du sort, le "mètre vrai" est plus faux que le provisoire !!

Ce mètre vrai de Delambre et Méchain trop court de 0,23 mm !!!
Mais cette erreur de mesure a été retranscrite et continue a être officielle de nos jours.

Il est intéressant de voir que dans son décret, le 8 mai 1790, l'assemblée avait choisi une définition du mètre basée sur le pendule qui bat la seconde. A 45° de latitude ou tout autre qui pourrait être préférée. Il est aussi fait mention qu'on "supplie" le roi de demander aux anglais de collaborer sur ce sujet. (un projet similaire était en cours !)

Le 26 mars 1791, la commission décide que le pendule dépend de la seconde et n'est pas une bonne mesure. Le 1/4 de l'équateur non plus, car c'est loin et ne correspond qu'à une partie des humains. Donc c'est le 1/4 du méridien qui est choisi.

Il est proposé d'aller mesurer le morceau de méridien entre Dunkerque et Barcelone soit 9.5° et d'en extrapoler la mesure du 1/4 du méridien en supposant que la Terre est une ellipse de révolution. Ce qui finalement c'est avéré faux....

L'idée que le pied est basé sur la taille du pied du roi c'est mal comprendre cet ancien système

C'est bien mal comprendre le système de la coudée, des pieds que de raconter cette fable qui explique que le pied de l'unité de mesure est le pied du roi !

Si on connait un peu la géométrie sacrée et le savoir des bâtisseurs de cathédrales, on découvre que ce système de paume, palme, empan, pied, coudée, n'est pas fait au hasard et que la dimension n'est pas faite en référence à des parties du corps, même si il y a une similitude d'une part ménémotechnique et d'une autre part de la structure du corps.

La système de "quine des bâtisseurs" (aussi appelé parfois "pige des bâtisseurs" ) est construit sur la base d'une division en proportion dorée. (au lieu de la division décimale)

quine-batisseurs-Pentagramme-nombre-dor-geometrie-sacree-

Il se trouve que ce système de quine est aussi en lien avec le mètre !!
En effet, l'empan vaut 1/5 de mètre !
Mais la coudées royale est aussi en bonne approximation 1/6 de la circonférence d'un cercle de 1 mètre de diamètre.

Par quel mystère est-ce possible ? Le hasard ? Une connaissance transmise dans les confrérie de bâtisseurs ? Une mesure retrouvée dans la pyramide par ses visiteurs et proposée comme définition de la nouvelle mesure universelle ?

Je ne sais pas. Mais je cherche.

Comme point de départ, je cherche si le mètre se trouve dans des endroits significatifs sur des monuments existant. De là on pourra voir si il y a une cohérence, une idée de technique simple qui pourrait expliquer ce mystère. (peut être le pendule ?)

Nous allons faire ici une liste la plus exhaustive possibles d'occurrences de l'utilisation du mètre dans un passé plus ancien que 1800.

Liste de monuments et objets anciens qui indiquent le mètre

Le disque de Nebra

Le disque de Nebra fait 1m de circonférence.

disque de Nebra
9-disque de Nebra NureaTV Howard Crowhurst diametre

En plus du mètre, on observe des mesures en centimètres. Le cercle du soleil fait 10cm de diamètre, celui de la lune fait 13cm, de diamètre, tout comme la distance entre les pointes de la "barque solaire" ou "ciel de nout", (tout dépend de l'orientation du disque)

Le rectangle solsticial sur l'image ci-dessus fait 24cm * 21cm.
Il y a vraiment beaucoup d'unité de mesure en cm.

Mais la distance entre les trous, très proche de 2,54cm... ce qui correspond au pouce anglais !

Pour en savoir plus sur cet ordinateur astronomique qu'est le disque de Nebra, voici mon article....

Stonehenge

Le cercle de pierre a une circonférence de 100,02m.

stonehenge
Stonehenge est un observatoire astronomique
plan de stonehenge selon flinders Petrie cercle en évidence - 100 metres
Plan selon Flinders Petrie publié en 1880

Voici les mesures de Flinders Petrie, à convertir en mètre pour que ce soit clair..

Il se trouve que Stonehenge (51° 10′ 44″ N  ou 51.17888) est à une latitude similaire de celle de Nebra. (51° 17′ 02″ N)

4-disque de Nebra NureaTV Howard Crowhurst latitutde provenance or et etain cuivre

Les blocs en H de Puma Punku

Les blocs en H de Puma Punku font 1m de Haut.
Voici les images de la mesure tirée du film BAM.

h bloc pierre puma punku
h bloc pierre puma punku hauteur 1 metre

Voici également les mesures complètes faites par A. Stübel et publié en 1892.

L'église de Saint-Nectaire contient une niche de 1 mètre et une pierre de 1 coudée l'un à côté de l'autre

Dans l'église de Saint-Nectaire en Auvergne, il y a une niche qui fait 1 mètre de large et ceci juste au dessus d'une pierre qui fait 1 coudée de large. (pour le détail sur le lien entre la coudée et le mètre est voir en bas de l'article)

Ces pierres sont montrées dans le film BAM.

La diagonale des pierres angulaires de la Cathédrale de Fribourg fait 1 mètre

Dans le dallage de la Cathédrale de Fribourg (suisse), il y a les pierres angulaires qui ont servies de référence pendant le construction. La construction a débutée en 1283.

pierre-angulaire-de-la-cathédrale-de-Fribourg
Pierres angulaire de la cathédrale de Fribourg intégrée dans le sol

Ce sont en fait deux pierres allongées en granite. Le granite est très solide et ne se dilate pas. Cette pierre a du servir comme étalon de mesure pour construire la cathédrale. En fin de chantier elle a été intégrée au dallage.

pierre-angulaire-de-la-cathédrale-de-Fribourg-diagonale-mesure-1-mètre-2x-1-pied-romain
Mesure de la diagonale des pierres angulaires

Comme on l'a vu ci-dessus, en géométrie sacrée c'est souvent la dimension des diagonales qui compte, et là on ne va pas être déçu....

Mais au passage, sache déjà que le petit côté de ce rectangle est formé par deux fois 1 pied romain. (29,635 cm)
(Le pied romain est toujours très utilisé de nos jours... c'est la hauteur d'une page A4 !!! soit 29,7cm)

La longueur des pierres fait 80,56cm. Ce qui correspond à √φ * la coudée sacrée de 63.3 cm. (une coudée qui en lien avec le rayon de la terre )

pierre-angulaire-de-la-cathédrale-de-Fribourg-detail-mesure-diagonale-1-metre

La diagonale de la pierre angulaire de la cathédrale de Fribourg vaut 1 mètre !!!
... et oui, le mètre est bien plus ancien qu'on le dit officiellement.

Diverses cathédrales en Europe

A la p.249 du livre "géométrie sacrée" de Stéphane Cardinaux. Il est dit que l'on trouve dans plusieurs cathédrales en europe des pierres angulaires marquant plusieurs unité de mesures connues, dont le mètre.

Il s'agit des pierres angulaires de l'Église Notre-Dame de Saint-Saturnin, de la Cathédrale Notre-Dame de Laon, de la Basilique Notre-Dame d'Orcival, et de la Cathédrale Saint-Nicolas de Fribourg.

Je n'ai visité personnellement que cette dernière, et effectivement comme montré ci-dessus, j'y ai vu sous le porche d'entrée les pierres angulaires, dont la diagonale mesure 1m !

Donc si qq'un est allé voir les autres cathédrales, je suis preneur d'info. Merci

Voici à quoi ressemble les pierres angulaire de la cathédrale de Laon. Ces pierres sont enchassées dans le dallages du sol, mais pas dans la même orientation. Il semble y avoir aussi un lien par là avec une orientation. L'axe est-ouest est perpendiculaire à la l'hypothénuse du triangle 3-4-5.

pierre angulaire cathédrale de Laon mètre

Liste de portes de monuments avec une taille liée au mètre

Quentin Leplat a fait une étude en mesurant les portes de nombreuses vieilles église et château.

Il y a de nombreuses portes de monuments du XI au XVIII ème siècle qui ont une taille liée au mètre.

Quelques exemples issus de cette étude:

  • La largeur de la porte gauche de la façade de la cathédrale Notre-Dame de Paris mesure exactement 2,000 m.
  • La largeur des portes du donjon du Château de Chambord mesure 1,000 m et 90,0 cm
  • Les deux gravures fichées dans les murs de l’Abbatiale de St- Nectaire du 11ème siècle mesurent 1,00m et 52,4 cm
  • La grande pierre fichée dans le mur de l’abbatiale de Conques mesure 1,00 m.- EGLISE DE ST DIERY , la porte mesure 100 cm ± 0,1.
Cathédrale Notre Dame Paris polaroid structure H

Le Coricancha basé sur le mètre

La salle mesure 10m de long à ± 0.01 et largeur des murs de 1m ± 0,005

Les niches avec un schéma directeur basé sur un double carré de 44.72 cm de côté, donc la diagonale du double carré vaut 1 mètre

coricancha mètre rectangle d'or

Quentin Leplat nous en parle dans cette vidéo:

Voici toute les références de Quentin Leplat à propos du Coricancha...

La porte du soleil a Tiahuanaco fait 3 mètres de haut et 4 mètres de large

La porte du soleil à Tiahuanaco a des proportions très particulières en géométrie sacrée, avec le nombre d'or partout, mais il se trouve aussi que cette porte a une hauteur de 3 mètres et une largeur de 4 mètres.

Ce qui forme même un triangle 3-4-5 le premier des triangles rectangles, ceci exprimé en mètre !

porte du soleil tiahuanaco 3 metre x 4 metre

L'Ahu de Tongariki sur l'ile de Pâques fait 100m de long

L'Ahu de Tongariki est une plateforme sur l'ile de Pâques qui soutient des Moaï, ces grandes statues. Tout le monde regarde les statues, mais les dimension du socle sont impressionnantes: 100m de long.

Et la rangée devant fait 220m de long. Ça marche aussi en mètre.

Grottes de Barabar

Les grottes de Barabar en Inde sont taillées dans le granite, elles ont au moins 2300 ans.

Des scan 3D au laser des grottes de Barabar ont été réalisés ces dernières années et montrent une grande précision milimétrique du poli de ces grottes. Mais on y remarque aussi les dimensions qui semblent être basées sur le mètre.

Par exemple, voici la grotte de Sudama, qui est composée de 2 pièces:
une salle rectangulaire de 9.98 m de long sur 5,94 mètre de large. (On est pas loin du 10 x 6 mètre....) et une pièce en forme de dôme de 6m de diamètre.

Mais le reste est encore plus impressionnant.

grotte de barabar sudama dimension en metre
Dimension de la grotte de Sudama à Barabar

Le scan 3D très précis nous montre pour la première pièce une hauteur de 4.0905 mètre.

Puis pour la seconde pièce, le centre du dôme est situé à 1,0113 mètre du sol. De là, c'est un rayon de 3,0513 mètre qui forme le dôme de la grotte. Donc au total, on a une hauteur maximale de 4,0799 mètre.

Un film est prévu sur les grottes de Barabar pour mars 2021:
BAM : COMPRENDRE BARABAR

Voici déjà un aperçu pour donner envie en 5 minutes.

Le mètre est présent dans la chambre de Khéops

La fameuse chambre haute de la grande pyramide de Gizeh a des dimensions totalement en accord avec la géométrie sacrée, donc en lien avec le mètre, voir le détail ci-dessous....

Mais plus directement il y a aussi une mesure en mètre d'un endroit très particulier dans cette chambre.

C'est la distance entre le sol et le centre du conduit du mur Nord de la chambre du roi. Le centre de ce conduit étant à exactement 5 coudées royales égyptiennes de la droite du mur, on a la un indice qui nous montre que ce centre du conduit n'est pas placé au hasard.

Voici le plan de ce mur refait par l'apprenti sage, sur la base des mesures de Gilles Dormion.

plan du mur nord de la chambre du roi de la pyramide de kheops selon mesure de gilles dormion - un metre entre sol et conduit

Voici l'explication en vidéo.

Distance Olympie - Mycène = 100 km

Olympie est le centre du monde grec. Et on dirait bien que les villes ont été placées sur un rayon de 100 km.

En tout cas c'est la position de Mycène. (et d'autres à vérifier)

mycène olympie 100km
100 km entre olympie et mycène

Le planétarium de Gizeh

J'ai déjà fait tout un article sur le sujet du planétarium de Gizeh, tellement c'est incroyable.

Mais il semble bien que les pyramides du plateau de Gizeh représentent les planètes du système solaire !

  • les pyramides symbolisent les planètes du système solaire
  • les pyramides sont placées sur les orbites moyenne des planètes à une échelle de 1:100 millionième
  • les pyramides ont des tailles apparentes vues depuis le lieu symbolisant le soleil qui sont en relation avec leur magnitude apparente.

L'échelle est donc une échelle en mètre !!

J'ai joué avec Google Earth et ça semble marcher en bonne partie. Si tu veux vérifier par toi-même, voici mon fichier kml que tu peux reprendre ici.

planetarium-de-gizeh-pyramide-egypte-google-earth-1

Unité de mesures anciennes liées au mètre

Il existe plusieurs anciennes mesures liées directement ou indirectement au mètre.

Le pied Drusien

Le pied Drusien mesure 33.3396 cm. Soit ~1/3 de mètre.

La coudée royale égyptienne

La coudées royale égyptienne est la même que la coudée des bâtisseurs de cathédrales.

coudee-royale-egyptienne-musee-saqqarah
coudée royale égytienne à 52.36 cm

Selon moi, il y a deux définition de la coudée royale égyptienne, la version masculine basée sur la droite et la version féminine basée sur le cercle.

fleur-de-vie-origine-coudee-royale-egyptiennen
Définition féminine de la coudée royale, soit 1/6 de la circonférence d'un cercle de 1 mètre de diamètre
triangle-des-bâtisseurs-origine-coudée-royale-égytienne
Définition masculine de la coudée royale à partir d'un double carré de 1m de côté

L'empan correspond à 1/5 de mètre

Le système de la coudée s'inscrit dans le système de la quine des bâtisseurs avec des subdivisions en lien d'une proportion dorée.

L'empan, une mesure qui est liée à la distance entre le pouce et l'auriculaire vaut 1/5 de mètre: 20 cm.

empan humain unité mesure nombre d'or
quine-batisseurs-Pentagramme-nombre-dor-geometrie-sacree-

Expressions qui suggèrent la connaissance du mètre

Il y a des longueurs qui ne sont pas directement en mètre, mais qui laissent penser que le mètre était connu.

C'est par exemple le cas de la géométrie de la chambre haute (dite du roi) de la grande pyramide de Gizeh (dite de Khéops).

Le sol de la chambre est un double carré, forme qui ouvre sur pleins de notions en géométrie sacrée.

Mais au delà des proportions, il y a la taille de la chambre. On peut la faire à n'importe quelle taille, en tout petit microscopique ou géant... mais il n'y a qu'une seule taille qui fait ressortir l'expression de π et du nombre d'or si on mesure en mètre et c'est cette taille là qui justement a été choisie et pas l'infinité des autres !!

Certains dirons que c'est du hasard... mais faut quand même souligner que la probabilité que ça arrive reste très très faible.

pi et phi en metre dans la chambre haute grande pyramide gizeh kheops
Expression de π et Phi en mètre dans la grande pyramide de gizeh

Ainsi le périmètre du sol de la chambre vaut 31.42964 m ce qui est une bonne approximation de 10 fois π.

Le périmètre moins un petit côté, mesure 26,18303 mètre et ce qui équivaut à 10 fois phi, le nombre d'or.

Il y a évidemment une petite différence au niveau mathématique, mais au niveau de la précision de construction d'un bâtiment, pas certain qu'on puisse faire plus précis ! On parle d'une précision milimétrique !

A compléter...

Je sais qu'il y a encore beaucoup de d'autres exemples, notamment indirect par calculs et quand on mesure des alignements un peu partout. Donc cette liste est à compléter.

Quentin Leplat a aussi un article passionnant qui montre que la mesure de la Terre par les anciens est une certitude et qu'il y a une forte probabilité que le mètre existe bien avant sont invention officielle.

Tout n'est pas encore claire. Mais garde l'esprit ouvert...

... et si tu as des exemples, n'hésite pas à les ajouter en commentaire.

Afin de vérifier l'étude de Quentin Leplat sur les portes, voici une nouvelle étude qui est lancées pour aller mesurer des anciennes portes. En parler, c'est bien.. agir c'est mieux.... à bientôt.

Qu’est ce que la géométrie sacrée ? – Introduction

La plupart des gens ont fait de la "géométrie" à l'école, mais qu'est-ce que la "géométrie sacrée" ?

La langue des oiseaux nous donne directement une réponse: la géométrie: Ça crée.

Bien qu'incomplète, je trouve que c'est une bonne définition. Car oui, la géométrie permet de créer.

C'est même la base de l'art des bâtisseurs, et pas n'importe lesquels. On parle là des bâtisseurs des monuments les plus connus, les plus emblématiques, les plus beaux, et aussi les plus mystérieux de cette planète!

En effet, la géométrie sacrée est omniprésente chez les bâtisseurs de cathédrales, mais aussi chez les bâtisseurs de pyramides et même chez les bâtisseurs de mégalithes.

La géométrie sacrée est probablement une des sciences les plus anciennes qui existe.

Dans cet article nous allons voir les bases de la géométrie sacrée, nous allons voir de quoi te faire l'oeil à une autre manière de voir.

Ainsi tu pourras regarder sous un oeil neuf des monuments que tu as déjà certainement vus, mais dont tu n'avais pas pris l'ampleur de la magie de leur construction !

pyramide gizeh panorama dromadaire

Introduction à la Géométrie sacrée en vidéo

Le contenu de cet article est également disponible en vidéo. Les contenus se recoupent, mais parfois il y a des anecdotes que l'on ne voit quand dans une seule version.

Tout est question de proportion

Pour bien entrer dans le sujet de la géométrie sacrée. Il faut se remettre dans le contexte ancien. Le mode de pensée n'est pas le même que de nos jours.

La manière d'aborder les mathématiques dans l'antiquité et de nos jours est très différente.

De nos jours on aime bien utiliser les nombres à virgule.

Si je prend un passant au hasard dans la rue et que je lui demande ce qu'est le nombre PI, π....

..... majoritairement il va me répondre:

  • C'est 3,1415.....

OK, c'est juste, c'est la représentation du nombre π sous forme de nombre à virgule. Mais quel est le sens du nombre π ? Qu'est-ce qu'il représente ?

Si la personne a fait un peu quelques études, elle va me répondre qu'il y a un lien avec le cercle.... mais la réponse complète est rare.

Alors pour te "culturer" un peu, le nombre π représente le rapport qu'il y a entre la circonférence d'un cercle et son diamètre. Ce rapport est toujours le même peu importe la taille du cercle. On a donc là une proportion, juste une proportion peu importe la taille, la mesure de l'objet.

Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π
Animation qui montre le rapport entre la circonférence et le diamètre d'une roue soit π

Ainsi, cet exemple montre bien qu'il est possible de manipuler des objets mathématiques juste avec des proportions.

C'est plus tard, dans un second temps que l'on va fixer la proportion à une échelle précise en se basant sur une grandeur physique réelle.

La taille de la Terre par exemple... d'où le fait que l'on parle de Geo-métrie, mot qui signifie mesure de la Terre.

On verra plus tard, que les unités de mesures utilisées en géométrie sacrée sont tout à fait étonnantes.... On va parler de pieds, de coudées, mais aussi du mètre.

Là on verra que l'histoire officielle ne semble pas correspondre avec l'observation des monuments anciens !!

Il y a un bug dans la matrice !!!

Une des explications possible, est que des sociétés secrètes ne nous ont pas tout dit.... Je pense particulièrement à des sociétés qui ont un compas et une équerre comme emblème.....

Des sociétés chez qui la Géométrie semble quelques chose d'important, et même de sacré...

équerre et compas emblème franc maçon G

Sans calculatrice il est possible d'être plus précis

Tu peux également abandonner ta calculatrice, car en géométrie sacrée, on se fiche bien de savoir que π se représente en notation décimale à virgule par 3,1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811.... et encore des milliards de décimales...

Cette représentation est très lourde, toujours incomplète et donc jamais exacte. Alors qu'il suffit d'une lettre pour tout dire: π

En géométrie sacrée, il faut penser comme les anciens. Si l'on se met dans ce mode de pensée, il y a des correspondances qui sautent aux yeux, alors que si on reste dans le mode notation décimale à virgule, on passe à côté.

Voici encore un exemple d'un sondage dans la rue. Si je prends quelqu'un au hasard et que je lui demande ce qu'est la racine carré de 2, soit la notation: √2 .....

.... et bien là j'ai souvent un grand silence. Ou encore, la personne sort son smartphone 📱et tente de trouver le symbole √ sur sa calculette... et c'est le drame... sauf si elle connait l'astuce de passer son iPhone en mode panoramique pour découvrir des touches supplémentaires...

... et là on me dit fièrement √2 = 1.414213562373095048801688724209...

OK, mais comme avec le nombre π ci-dessus, je demande: ... et ça représente quoi √2 , ça a quel sens ?

Bref, tu l'auras compris. Notre société ne fonctionne pas du tout de la même manière. On a un certain savoir de type bourrage de crâne, mais quand à comprendre le fondement des choses. C'est pas terrible.

Donc, la racine de 2 peut tout simplement se comprendre comme étant la diagonale d'un carré de 1 de côté. (toujours en proportion, sans échelle particulière)

racine-de-2-diagonale-carre-Construction_of_square_root_of_2_on_the_line_number
La racine carrée de 2 est tout simplement la diagonale d'un carré de 1 de côté.

On verra ci-dessous, qu'en géométrie sacrée, les diagonales de carrés et de rectangles sont très souvent utilisées. Notamment pour représenter la notion d'angle.

La plus ancienne représentation que l'on a de la connaissance mathématique de la racine carrée de 2 date de ~ -1900. Il s'agit de la tablette d'argile YBC 7289.

Tablette d'argile babylonienne YBC 7289 montrant la √2
Tablette d'argile babylonienne montrant la √2

Personnellement, depuis que je m'intéresse à la géométrie sacrée, je vois des constructions, notamment mégalithiques, qui mettent en oeuvre des connaissances mathématiques du même type et ceci dans un temps bien plus ancien !

Depuis quelques années, Norman Wildberger, un Dr en math, professeur dans une université australienne développe une nouvelle forme de trigonométrie dite rationnelle, la trigonométrie de Wildberger.

Cette trigonométrie est beaucoup plus simple à utiliser et plus efficace pour faire des calculs par ordinateur car elle ne manipule pas de nombres réels à virgule flottante. On retrouve donc là une approche similaire à celle des anciens. Et on se dit que c'était très intelligent !!

On redécouvre de plus en plus, que notre mode de pensée actuel nous fait passer à côté d'autre chose. On redécouvre que cette ancienne manière de penser qu'on voit souvent comme primitive est en fait souvent plus évoluée qu'on le crois au premier abord.... et même plus évolué que ce qu'on fait actuellement !

Plein de nombres constructibles irrationnels et même transcendants!

Alors que de nos jours on aime bien utiliser des nombres un peu ronds.... 1 mètre, 2 mètres. ou encore, 1,5m ou à la limite 2,60 ou 3,9.... les anciens ont l'art d'utiliser des nombres spéciaux qui sont difficilement représentables avec la notation décimale à virgule.

Donc c'est normal qu'on ai un peu de peine à se comprendre !

🤷🏼‍♀️

Des nombres constructibles

On a déjà vu ci-dessus des nombres comme π ou √2. Mais on verra que c'est pas fini. Il y a encore une foule d'autres racines... notamment √3 et √5. Ceci tout simplement car c'est ainsi qu'on calcule la diagonale d'un rectangle. (ci-dessous représentée par la lettre c)

On utilise le fameux théorème de Pythagore. (en fait ce théorème était connu bien avant la naissance de Pythagore... ce dernier l'a juste rapporté comme souvenir d'un voyage en égypte...)

\[c = {\sqrt{a^2+b^2} }\]

Les nombres √2, mais aussi √3, sont des nombres dit irrationnels, car on ne peut pas les exprimer par un ratio. (une fraction simple)

Mais comme on l'a vu par la géométrie, ce sont des diagonales. C'est simple à manipuler. Ce sont des nombres dit Constructibles. Car on peut les construire à la règle et au compas.

Des nombres non constructibles à la règle et au compas

Par contre pour le nombre π, c'est aussi un nombre irrationnel, mais en plus il est transcendant !
(comme son copain le nombre e)

Ça signifie que π n'est la solution d'aucune équation polynomiale. Donc avec ça on est coincé. Il n'est pas possible de dessiner le nombre π.
(Donc sur une ligne droite, sans le dérouler comme c'est fait dans l'animation en début de page.)

Pour dessiner π il y a des méthodes d'approximation, mais ça reste une approximation. C'est la cas par exemple de la méthode de Kochanski.

Le problème de la non-constructibilité de π, c'est ce qui empêche de résoudre le problème de la quadrature du cercle. Un problème qui a occupé les mathématiciens pendant des millénaires.

L'idée de base c'est de construire un carré qui a la même aire (surface) qu'un cercle donné.

quadrature du cercle Le carré de côté √π a la même surface que le cercle de rayon 1
Le carré de côté √π a la même surface que le cercle de rayon 1

Pour construire ce carré, il nous faut trouver la √π .... et là ça coince. Impossible à résoudre avec seulement un compas et une règle.

Donc depuis la fin du 19ème siècle on sait que c'est peine perdue de trouve une solution à ce problème, à cause de la transcendance de π.

D'où l'expression "Chercher à résoudre la quadrature du cercle"...

.... et pourtant !

La grande pyramide de Gizeh une solution au problème de la quadrature du cercle.

De mon observation de la géométrie sacrée et des monuments anciens, je vois que le problème de la quadrature du cercle a été résolu. Du moins, ça en est une excellente approximation.

Cette solution c'est la grande pyramide de Gizeh. La géométrie de cette pyramide nous montre une base carré qui a pour origine un cercle qui sert à construire la hauteur de la pyramide.

On reviendra sur la géométrie de la grande pyramide dans un article dédié car c'est là l'emblème même de la géométrie sacrée. Il y a tellement de chose à dire sur ce monument incroyable !

martouf en egypte a gizeh pyramide

Le nombre d'or, le cœur de la géométrie sacrée

Ici j'aimerai juste souligner que cette prouesse d'avoir matérialisé en si imposant la solution de la quadrature du cercle tient aux propriétés d'un nombre que je n'ai pas encore évoqué ici, mais qui est le cœur de la géométrie sacrée. Il s'agit du nombre d'or.

On l'écrit avec la lettre phi: φ

Il y a tellement de choses à dire sur le nombre d'or, ou plutôt la proportion dorée, vu qu'on a dit que tout est proportion, que j'avais déjà écrit un article pour montrer tous les domaines dans lesquels le nombre d'or est la structure sous-jacente.

On a de la chance, le nombre d'or est un nombre constructible. Il vaut:

\[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\]
nombre d'or en ligne

Trois points alignés, déterminant deux segments forment une section dorée (un rapport égal à Phi), s’il y a de la petite partie à la grande, le même rapport que de la grande au tout.

\[{a+b \over a} = {a \over b} \]

Le nombre d’or est le seul rapport qui met en résonance la partie avec le tout. On peut donc le voir comme étant une résonance (fractale) entre la créature et son créateur.

C’est pour cette raison que ce rapport est souvent appelé: La divine proportion.

Dans le cas de la quadrature du cercle, l'astuce utilisée dans la construction de la grande pyramide de Gizeh a été de remplacer un expression de π inconstructible par une expression approximative de composée de φ qui elle est constructible:

\[{4 \over π} ≈ {\sqrt{φ}} \]
Quadrature du cercle solution geometrie sacree pi racine nombre or

C'est peut être beaucoup d'informations d'un coup. On verra ci-dessous d'où viennent ces traits de construction. Ces formes, ces diagonales et tout ces nombres remarquables que l'on retrouve tout le temps en géométrie sacrée.

A force de les voir on commence à les savoir par cœur et être capable de faire le lien entre une proportion géométrique, son expression mathématique algébrique et sa notation numérique.

Valeurs numériques de nombres courants en géométrie sacrée

Afin de faire le lien entre les anciens et nous, voici les nombres les plus couramment utilisés en géométrie sacrée en expression algébrique et dans leur équivalent en notation numérique:

\[φ ≈ 1.61803398875 \] \[ {1 \over φ} ≈ 0.61803398875 \] \[ {φ^2 } ≈ 2.61803398875 \] \[ √5 ≈ 2.2360679775 \] \[φ = {1 + \sqrt{5} \over 2} ≈ 1.61803398875\] \[{1 \over φ} = {2 \over {1 + \sqrt{5}}} ≈ 0.61803398875\] \[e ≈ 2.71828182846\] \[e ≈ {φ^2 } + {1 \over 10} = 2.71803398875 \] \[√φ ≈ 1.27201964951 \] \[{4 \over π} ≈ 1.27323954474 \] \[ √φ ≈ {4 \over π} \] \[√3 ≈ 1.7320508075688772935\] \[√2 ≈ 1.41421356237\] \[ \cos{π \over 6} = {\sqrt{3} \over 2} ≈ 0.86602540378 \] \[ π ≈ 3.141592653589793 \] \[ {π -φ^2} ≈ 0.52355866484 \] \[ {π \over 6} ≈ 0.5235987756 \] \[ {φ^2 \over 5} ≈ 0.52360679775 \] \[ {5 \over 6 }π ≈ 2.61799387799 \] \[ {φ^2} ≈ 2.61803398875 \] \[ {1+2+ \sqrt{5} \over 10} ≈ 0.52360679775 \]

L'essentiel des nombres à retenir

Le nombre d'or

φ = le nombre d'or = 1.61803398875...
Mais aussi ses déclinaisons, comme son inverse qui = 0.61803398875... (1 de moins) et son carré φ^2 = 2.61803398875... (1 de plus)

Là autour, il y a plein d'approximations très proches faites à base du nombre π. Comme 5/6 π ≈ 2,61799387799...

C'est très étonnant que ces nombres si spéciaux puissent avoir des liens d'approximation si serrés.

Mathématiquement ces liens sont des approximations et pas des valeurs exactes. Il y a une page wikipedia qui les recense comme des coïncidences mathématiques.

Dans une réalisation architecturale, vu que l'on est pas dans le monde idéal des mathématiques, mais dans un monde où les dimensions ont une marge d'erreur, dans un monde où la précision n'est pas infinie. Dans ce cas, que l'on utilise la valeur exacte où une approximation, le bâtiment construit sera le même.

La géométrie sacrée étant principalement utilisée pour créer des bâtiments, certaines personnes n'hésitent pas à faire des raccourcis et dire que des approximations sont des égalités....

....Puis les puristes des maths leur sautent à la gorge.. et on voit des combats. Il y a de trolls qui polluent les espaces de commentaires sur le net en débats stériles de savoir si ce sont des approximations ou des valeurs réelles.

Pour cette raison dans cet article, je tente de bien distinguer les approximations des valeurs réelles mathématiques.

Cathédrale Notre Dame Paris polaroid structure H

La coudée royale égyptienne

Il existe deux définitions mathématiques simple de la coudée royale égyptienne:

0,523606... mètre = φ^2/5 mètre
1/10 du périmètre du triangle des bâtisseurs en mètre (triangle rectangle don l'hypoténuse est la diagonale d'un double carré.)
0,523598... mètre = π/6 mètre
1/6 de la circonférence d'un cercle de 1m de diamètre

triangle des bâtisseurs origine coudée royale égytienne
fleur de vie origine coudee royale egyptiennen

Il est à noter que la coudée royale égyptienne est la même que la coudée utilisée par les bâtisseurs de cathédrale dans le système de "quine des bâtisseurs" (aussi appelé parfois "pige des bâtisseurs" et qui sert à construire des outils comme la "canne des bâtisseurs")

Quine des bâtisseurs de cathédrale un système de mesure imbriqué fractalement avec un rapport du nombre d'or. On le voit bien dans un pentagramme.

Dans ce cas, je viens d'introduire la notion d'unité de mesure. Soit un nombre dans une proportion pure, mais qui est lié à une dimension physique concrète.

Il y a de nombreuses relations mathématiques qui peuvent mener à la définition de la coudée royale. Tout ceci fait encore largement débat. Je n'entrerai pas dans plus de détail dans cet article introductif déjà bien long !

Je n'irai pas non plus ici beaucoup plus loin la notion d'unité de mesure ancienne. C'est un vaste sujet qui méritera un articles complet. (coudée royale, pied, yard mégalithique, pied romain, coudée de Nippur, origine du mètre.. etc..)

coudee-royale-egyptienne-musee-saqqarah

Cascade des racines carrées

Maintenant que les bases sont posées. Maintenant que tu as eu l'occasion de comprendre que les anciens avaient un rapport aux mathématiques très différent de ce qui se fait actuellement. On va pouvoir entrer dans le vif du sujet.

Voici la construction de l'essentiel des nombres dont on a besoin et ceci juste à partir d'un carré de 1 de côté. (toujours sans dimension, juste une proportion.)

C'est une cascade de diagonale. On commence par dessiner le carré de 1 de côté. Sa diagonale vaut √2.

Puis on reporte cette diagonale pour créer un rectangle avec un côté qui vaut √2 et l'autre qui vaut toujours 1. La diagonale de ce rectangle vaut √3.

Puis on procède de la même manière, on reporte à nouveau la diagonale de ce rectangle pour obtenir un nouveau rectangle et on obtient une diagonale qui vaut √4 = 2.

Et là, c'est magique. A partir d'un seul carré, on en a maintenant deux !

geometrie-sacrée geogebra-cascade-racine-diagonale-moyen-martouf

Le double carré, le bi-carré est une forme très importante de la géométrie sacrée. C'est depuis cette forme que l'on peut générer toute une géométrie liées à φ , le nombre d'or. Ceci car la diagonale d'un double carré (en rouge) vaut √5.

Et il se trouve que √5 c'est la somme du nombre d'or et de son inverse !

\[ {1 \over φ} + φ = \sqrt{5} \]

J'ai mis un point sur la diagonale rouge pour montrer la différence ente φ et 1/φ.

On va regarder ça en détail.

Le double carré, la base d'une géométrie du nombre d'or

On a vu ci dessus que le nombre d'or vaut:

\[φ = {1 + \sqrt{5} \over 2} = {1 \over 2} +{\sqrt{5} \over 2} ≈ 1.61803398875\]

On va observer à quoi ça correspond en terme de géométrie.

double carré ou bi-carré dans la géométrie sacrée, base de la génération du nombre d'or

Si l'on commence sur le point en bas à droite du double carré, on peut obtenir un segment vertical qui fait la moitié du côté, soit 1/2.

Depuis là, on ajoute le segment vert clair. Soit la diagonale d'un rectangle 1/2 et 1. Ce qui revient à la moitié de la diagonale du bi-carré. Soit √5/2.

On voit que ceci correspond tout à fait à l'équation qui nous donne la valeur de φ. Voilà. On a généré la longueur du nombre d'or.

C'est grâce à cette longueur que j'ai pu placer le point rouge qui coupe la diagonale √5 avec 1/φ d'un côté et φ de l'autre.

Ensuite, au centre il y a une droite verticale orangée. Je l'ai générée en faisant croiser la longueur de φ depuis le coin en bas à droite, avec le prolongement du côté commun aux deux carrés du bi-carré.

Voilà, on a ainsi généré un segment de longueur √φ.
(Petit rappel, chaque nombre est une proportion par rapport au côté du carré qui vaut 1. Donc ici √φ * 1 = √φ . Mais quand on donnera une dimension réelle au côté 1 il ne faudra pas oublier de faire la multiplication par la taille du côté.)

J'ai ici créé un nouveau triangle tout à faire remarquable auquel on peut appliquer le théorème de Pythagore.

\[{{\sqrt{φ}}^2+1^2}= φ^2\]

Il s'agit du triangle de Kepler. Il y a un rapport du nombre d'or entre chaque côté.

Le bi-carré la base de monuments mégalithiques depuis des millénaires

Ce double-carré est vraiment une forme très courante en géométrie sacrée.

Le profil de la grande pyramide de Gizeh (Kheops)

C'est ainsi que la construction du triangle de Kepler obtenue avec le double carré se trouve être le profil de la grande pyramide de Gizeh.

Le côté de la pyramide vaut 2. Ainsi le demi côté vaut 1. La hauteur de la pyramide vaut √φ. Et l'apothème, vaut φ.

Géométrie sacrée profil de la grande pyramide de Gizeh (pyramide de Chéops) Nombre d'or, triangle de kepler

Le sol de la chambre haute de la grande pyramide de Gizeh est un bi-carré

Pour aller encore plus loin et montrer que ce n'est pas une proportion faite au hasard. La chambre haute de la grande pyramide de Gizeh est aussi construite selon un double carré !

Le sol de la chambre est un bi-carré. Ici on a un monument construit en vrai. Donc il y une dimension. L'unité de mesure utilisée est la coudée royale égyptienne. Pour faire court. Elle vaut ≈ 0,5236 mètre.

geometrie sacree chambre haute grande pyramide gizeh cheops coudee double carre nombre or

Le double carré de la chambre haute de la grande pyramide est composé de carrés de 10 coudées royales de côté.

La hauteur de la chambre est générée de manière un peu plus subtile. En fait, c'est une demi diagonale du double carré qui est relevé. (Le segment vert sur l'image précédente) On a donc 11,18033 coudées.. ce qui correspond à √5 * φ^2 mètre.

schéma de la chambre haute de la grande pyramide de gizeh. Dite chambre du roi.

Menhirs de Clendy à Yverdon

A des milliers de kilomètres de l'Egypte, mais également à 2 millénaires d'intervalle dans le temps, on retrouve aussi un alignement de menhirs à côté de chez moi qui est construit sur la base d'un bi-carré.

Il s'agit de l'alignement des menhirs de Clendy à Yverdon qui date du IV millénaire avant J.-C.

alignement-menhirs-de-clendy-yverdon

On ne sait pas si toutes les pierres sont encore là. On sait que le site a été sous l'eau pendant 2000 ans. La plupart des fosses des menhirs ont été découvertes en 1975 et ainsi en 1986 on a pu redresser les menhirs à leur emplacement originel supposé.

schéma directeur en double carré de la construction des menhirs de clendy

Le schéma directeur de construction de ce site est très probablement un double carré. Comme on l'a vu ci-dessus, ce double carré est une porte ouverte à tout l'univers du nombre d'or: pHi.

Cette idée du schéma directeur des menhirs de Clendy vient du livre "Géométrie sacrée" de Stéphane Cardinaux.

J'ai aussi remarqué que l'azimut de l'axe central est à 222°. C'est déjà un joli nombre. Mais c'est pas tout !!

222°, c'est le complément de 137.51° soit l'angle d'or. C'est la variante angulaire du nombre d'or.

angle d'or
Proportion dorée de circonférence d'un cercle

Donc les bâtisseurs de l'alignement de menhirs de Clendy ont réalisé un double carré, une géométrie qui ouvre directement sur le nombre d'or. Mais aussi ont aligné ce double carré avec un angle d'or par rapport au nord. Ceci il y a 6000 ans !

Le triangle 3-4-5

Le triangle 3-4-5 est le premier des triangles rectangles. Il s’agit du triangle rectangle à côtés entiers avec l’hypoténuse minimale, et le seul triangle dont les longueurs de côtés suivent une progression arithmétique.

Triangle 3-4-5 corde a 13 noeuds

Ce triangle 3-4-5 a des propriétés mathématiques intéressantes qui ont permis de construire un outil très utilisé des arpenteurs et bâtisseurs: la corde à 13 nœuds.

Pourquoi utiliser les nombres 12 et 60 pour diviser le temps ?

Pourquoi est-ce qu'il y a 12 heures sur un cadran de montre ?
Pourquoi est-ce que l'on divise un heure en 60 minutes, et une minute en 60 secondes ? ⏱

L'explication se trouve dans le triangle 3-4-5.

Avec les chiffres des côtés (3-4-5) on a peut faire une suite arithmétique (addition) et une suite géométrique (multiplication).
(Dans le même genre, le mythique nombre φ est la seule proportion qui est en même temps une suite arithmétique et une suite géométrique. Donc c'est le même genre de logique qu'on cherche avec le triangle 3-4-5)

  • 3 + 4 + 5 = 12
  • 3 * 4 * 5 = 60

J'ai repris cette idée chez Edmée Jomard (un des tout premier égyptologue ayant participé à la campagne napoléonienne en égypte), à la page 225 de son livre: "Mémoire sur le système métrique des anciens Égyptiens, contenant des recherches sur leurs connoissances géométriques et sur les mesures des autres peuples de l'antiquité " publiée en 1817.

Le détail est à la p225.

Jomard tire lui même cette idée du philosophe romain du 1er siècle Plutarque, qui lui-même dit le savoir du philosophe grec Platon (de 400 ans plus vieux). Il est connu que Platon a fait un séjour en égypte chez des prêtres à Héliopolis.

12 et 60 sont de plus des nombres dit "fiables"(selon la définition mathématiques des nombres qui peuvent se diviser facilement, donc très pratique pour faire des divisions horaires.)

Si on continue les propriétés mathématiques de ces nombres:
12*60 = 720
12+60 = 72

Magique non ?

Conclusions: tu as les bases pour explorer le monde

Maintenant que nous arrivons au terme de cette introduction (déjà hyper complète) à la géométrie sacrée, tu as les bases pour voir les monuments sous un regard neuf. Tu as de quoi décrypter les intentions des bâtisseurs.

Géométrie plutôt que chiffres à virgule

Si l'on se remémore les points importants, il faut se souvenir, que les anciens bâtisseurs n'ont pas le même rapport aux mathématiques que nous. Ils privilégient la géométrie, le dessin et pas les nombres en notation à virgule.

Des proportions en résonance fractale

Les anciens bâtisseurs aiment construire des bâtiments où les proportions de chaque élément sont en résonance les un avec les autres par des proportions.

La proportion la plus connue, et la plus "magique" étant la proportion dorée. Cette proportion qui met en lien le tout et sa partie de manière fractale.

Les anciens ont utilisé les propriétés de cette proportion dorée comme support d'un système d'unité de mesure avec la quine des bâtisseurs.

En prenant conscience que ces unités de mesure antiques ne sont pas juste des mesures étalonnées sur les pieds ou bras des monarques, mais sur des relations mathématiques, c'est toute une compréhension du monde qui s'ouvre.

Ceci, bien qu'en fait, le corps humain est, comme beaucoup de choses dans la nature, structuré sur la base de proportions de géométrie sacrée, et notamment autour du nombre d'or. Il n'est donc pas faux de dire qu'il y a un lien entre la mesure de partie du corps humain et des unités de mesures. Mais ce n'est pas QUE ça. Il ne faut pas oublier le sous-jacent mathématique.

Da_Vinci_Vitruve_Luc_Viatour

La géométrie sacrée relie tout. Elle fait entrer en résonance les humains et les constructions qu'ils habitent.

Ainsi, un temple, une cathédrale, une pyramide, un alignement de menhirs est généralement construit avec de la géométrie sacrée.

Les mêmes principes de construction se retrouvent du microcosme au macrocosme, de l'humain aux galaxies.

« Ce qui est en bas est comme ce qui est en haut, et ce qui est en haut est comme ce qui est en bas »

Cette citation est un des principaux enseignement d'Hermès Trismégiste que l'on retrouve dans la Table d'émeraude.

Exemple pratique de décodage de la géométrie sacrée d'une cathédrale

Quand on est quelque peu "initié" à ces connaissances hermétiques (comme la fermeture des boites Tupperware... :p ) il est possible de voir dans un tas de caillou un sens plus profond.

Voici un exemple pour illustrer mes propos.

Avec l'œil ouvert, il possible de repérer des pierres spéciales dans un simple dallage de cathédrale. Voici la pierre angulaire de la cathédrale de Fribourg.

pierre angulaire de la cathédrale de Fribourg
Pierre angulaire de la cathédrale de Fribourg

Ce sont en fait deux pierres allongées en granite. Le granite est très solide et ne se dilate pas. Cette pierre a du servir comme étalon de mesure pour construire la cathédrale. En fin de chantier elle a été intégrée au dallage.

Mesure de la diagonale de la pierre angulaire de la cathédrale de Fribourg

Comme on l'a vu ci-dessus, en géométrie sacrée c'est souvent la dimension des diagonales qui compte, et là on ne va pas être déçu....

Mais au passage, sache déjà que le petit côté de ce rectangle est formé par deux fois 1 pied romain. (29,635 cm)
(Le pied romain est toujours très utilisé de nos jours... c'est la hauteur d'une page A4 !!! soit 29,7cm)

pierre angulaire de la cathédrale de Fribourg detail mesure diagonale 1 metre

La diagonale de la pierre angulaire de la cathédrale de Fribourg vaut 1 mètre !!!
... et oui, le mètre est bien plus ancien qu'on le dit officiellement.
Il y a de nombreuses portes de monuments du XI au XVIII ème siècle qui ont une taille liée au mètre.

Il se pourrait même que le mètre soit déjà présent sur des constructions mégalithiques beaucoup plus anciennes...

De plus comme évoqué plus haut, il y a un lien entre le mètre et la coudée royale égyptienne.

Il est peut être à rappeler que le mètre est directement lié à la mesure de la circonférence de la Terre. Cette mesure a déjà été réalisée avec précision dans des temps assez anciens.

Ainsi en géométrie sacrée, le mètre est une unité de mesure qui permet de mettre en lien, en résonance avec la dimension de la Terre.

🌍

Au tout début de cet article, j'ai insisté sur les proportions. Sur des liens entre grandeur sans dimensions.

Je termine cet article en reliant ces proportions à une dimension, à une échelle. Ceci se fait avec des unités de mesure.

Ainsi la présence du mètre dans la pierre angulaire de la cathédrale de Fribourg me fait penser que celle-ci a des proportions qui sont reliées à la dimension de la Terre.

Voilà, je te laisse maintenant voir le monde et les monuments anciens avec un œil neuf.

le Grand architecte de l universe God_the_Geometer
Dieu l'architecte de l'univers, frontispice d'une bible moralisée.

Merci au logiciel geoGebra qui m'a permis de réaliser les nombreux dessins de géométrie sacrée.

Construction des pyramides de Gizeh, le noeud auto-bloquant qui change tout

Entre mille autres sujets, le sujet de la construction des pyramides de Gizeh m'intéresse.

J'ai déjà entendu beaucoup de théories plus ou moins farfelues sur la construction des pyramides. J'ai été moi-même voir sur place.

martouf en egypte a gizeh pyramide

Et là, j'ai envie de faire un petit article par ce que cette théorie là, me semble plus intéressante que d'autres. Cette théorie de construction me semble plus complète, plus réaliste, plus plausible.. même si en fait.. Je doute qu'on sache un jour le fin mot de l'histoire...

Il s'agit de la théorie de construction proposée par Jean-Pierre Petit...
(Bon, voilà, maintenant que le nom de l'auteur de cette théorie de construction des pyramides est lâchée.. Je dois avoir déjà perdu la moitié des lecteurs qui ont des à priori... et j'ai croché une poignée de fan inconditionnel de ce physicien touche à tout...)

La Bande Dessinée qui explique la construction des pyramides de Gizeh

A son habitude Jean-Pierre Petit est un très bon vulgarisateur, il nous explique sa théorie sur les pyramides dans une bande dessinée très bien faite. (En général il est plus connu pour son modèle cosmologique Janus..)

Donc c'est pratique dans cet article je n'aurai pas grand choses à dire de plus. Juste mon avis et pourquoi je trouve que cette théorie est plus pertinente que d'autres.

Cette BD sur la théorie de construction des pyramides de Gizeh par Jean-Pierre Petit est disponible en téléchargement par ici....

couverture-BD-jp-petit-le-secret-dimothep-construction-pyramide-gizeh

Une machinerie de levier pour tirer les blocs des pyramides

Le point essentiel don J.-P Petit parle dans sa théorie de construction des pyramides, c'est une machinerie avec des leviers, un peu dans le genre de la forme d'un pied de biche.

Il y a deux leviers et des cordes qui les actionnent depuis en bas. Les cordes servent à tirer des blocs qui grimpent sur la pyramide le long d'une rampe en spirale.

machine levier pied biche construction pyramide jp petit noeud auto bloquant

Là il faut une image et même une vidéo pour expliquer tout ça car les mots ne suffisent pas à expliquer précisément le mécanisme.

D'ailleurs Hérodote a décrit le mécanisme de construction des pyramide en -450... et depuis on se pose des questions sur l'interprétation de ce texte, lui même de seconde main raconté par des prêtres...

« Voici comment on construisit cette pyramide, par le système des gradins successifs que l'on appelle tantôt krossai (corbeaux), tantôt bomides (plates-formes). On la construisit d'abord sous cette forme, puis on hissa les pierres de complément à l'aide de machines faites de courtes pièces de bois : on montait la pierre du sol jusqu'à la première plate-forme ; là, on la plaçait dans une autre machine installée sur le premier gradin, et on la tirait sur jusqu'au deuxième gradin, où une troisième machine la prenaitsource. »

Ce texte d'Hérodote est compatible avec la machine de Jean-Pierre Petit.

Jean-Pierre Petit a eu l'occasion de présenter ce modèle de levier à la cité des sciences pour une maquette où les gosses pouvaient déplacer des blocs de centaines de Kg.

C'est là que Jean-Pierre Petit a été attaqué par un autre Jean-Pierre... le fameux Jean-Pierre Adam que l'on voit dans le film, la Révélation des Pyramide.

Pour Jean-Pierre Adam, ce levier est "une application moderne du levier" et donc c'est donc "totalement exclus" que ça puisse avoir été utilisé !

Heu.. le levier c'est pas nouveau ! Archimède disait déjà comme image qu'avec un point d'appui et un levier il soulèverai le monde !

Et comme on le verra ci-dessous, il semble bien qu'on a même retrouvé un bout du fameux levier !

Le noeud auto-bloquant une technique lowtech toujours utilisée

Ce qui m'a le plus intéressé dans cette théorie de construction des pyramides de Gizeh c'est le noeud auto-bloquant.

C'est un mécanisme autant très sophistiqué, très efficace et super simple à faire. De nos jours on utiliserait des pinces hydrauliques commandées par électronique. Donc on a de la peine à imaginer un moyen simple.

noeud-autobloquant-prussik-StrickleiterHilfe
Noeuds auto-bloquant de Prussik accroché à deux cordes

Il se trouve que je fais de la spéléo, et que le système de poignée jumar et de bloqueur qui nous permet de remonter des hauts puits ça me parle bien. Notre version spéléo est à peine plus mécanique. Mais la version simple du noeud autobloquant est aussi encore très utilisées en escalade.

On parle souvent de noeud de prussik.

La théorie de halage des blocs de Jean-Pierre Petit utilise le même principe que pour remonter un puits en spéléo. C'est l'alternance en appui sur un noeud ou l'autre qui permet d'avancer.

Il faut juste quelqu'un sur le bloc qui va s'assurer que le noeud coulisse bien au bon moment.

Machine__traction_pyramide

Le point crucial dans ce système c'est la sorte de "poulie de renvoi" qui permet de faire glisser la corde, mais sans l'user.

Il se trouve que cette pièce existe bel et bien. Elle a été découverte en 1932 à Gizeh à côté de la pyramide de Khent-Kaoues qui est une pyramide satellite de celle dite de Chéops.

bloc basalte machine levier axe centrale mesure pyramide

Il me reste donc à vérifier et à retrouver la source de la découverte de cet objet "poulie de renvoi" en basalte. Si quelqu'un trouve la référence.. c'est bienvenu ! 🙂

objet_khent_kaoues mécanisme levier construction pyramide construction

J'ai retrouvé cette explication en vidéo qui explique que cet objet a été mal classé.. et que c'est pas une poulie comme l'égyptologue Selim Hassan l'avait dit.. mais plutôt un équarrisseur qui permet de tailler la pierre...

Il y a encore une autre version qui va aussi dans le sens d'un objet pour tailler la pierre, mais à mettre sous une sorte de balançoire pour augmenter l'efficacité !

Les paris restent ouverts ! ... à quoi sert cet objet ?

Une rampe en pierre qui s'enroule autour de la pyramide

Evidemment que pour hisser les pierres jusqu'en haut de l'édifice, il nous faut une pente pas trop raide (il semble que le maximum est 7% pour faire voyager des traineaux) et de la place.

Il y a plein de théories tout à fait officielle, mais sacrément farfelues au niveau technique qui préconisent des rampes pour faire glisser des traineaux tirés par un foule de personnes.

Certains égyptologues n'ont pas vraiment le sens pratique de l'ingénieur !

Cette idée est peut être bonne pour la base de la pyramide, qui représente quand même une masse énorme de matériaux. Mais très rapidement on voit que ça n'a aucun sens. La rampe devient vite trop grosses. Il faut une masse plus grande de la pyramide elle même !! .. et il faut que la rampe tienne avec une pente très élevée sur les côtés ! C'est pas très réaliste !

La rampe de la théorie de construction des pyramides mise en avant par Jean-Pierre Petit est plus simple, avec une pente acceptable et économe en matériaux.

Il s'agit d'une rampe qui fait le tour de la pyramide en spirale. C'est une rampe en pierre. Solide, mais amovible. Elle est posée sur des corbeaux intégré à la pyramide.

Cette image est issue du pdf complet avec le détail des étapes de construction d'une maquette de pyramide selon cette théorie .

Cette théorie de construction de pyramide a aussi un avantage, c'est qu'elle propose d'utiliser des blocs standards. Mais de plusieurs types.

On peut même imaginer qu'ils ont été produits à la chaine en grande quantité. On attribue au pharaon Snéfrou (père de Chéops) pas moins de 3 pyramides !! Ils étaient efficace à l'époque !

Peut être que les blocs ont été construits par les générations précédentes.. et juste placés et ajusté ?

Personnellement, je ne suis pas non plus convaincu par la version "officielle" qui nous dit que les pyramides sont toutes des tombeaux !

Pourquoi Snéfrou aurait-il eu besoin de 3 tombeaux ?
On reviendra sur le sujet plus loin.

bloc triangulaire pyramide gizeh construction plateforme

Ainsi en fin de chantier on va couper les corbeaux et ça va nous donner des blocs "triangulaires".

Ainsi on a une explication sur la nature des blocs qui sont souvent présentés comme étant des restes de parement. Mais dont l'auteur du film La révélation des pyramides, nous dit qu'il a des doutes que ce soit le parement, ceci en lien avec le fait que la grande pyramide (dite de Chéops) et celle dite de Mykerinos ont des faces incurvées.

La base de la pyramide est donc un octogone ! ... Mais on ne voit pas cet forme sur ces blocs triangulaires souvent présentés comme du parement.

La théorie de construction des pyramides de Gizeh selon Jean-Pierre Petit nous permet donc un éclairage nouveau sur la nature de ces blocs.

La piste est intéressante.

Comment les bâtisseurs des pyramides de Gizeh ont-ils assurés la précision de leur construction ?

Les pyramides de Gizeh sont connues pour leur orientation précise aux quatre points cardinaux. On ne va pas ici parler de la méthode de détermination du Nord géographique (et pas magnétique qui pourrait se lire à la boussole.. ce serait trop facile !)

On va parler ici de la méthode de mesure pour s'assurer que la pyramide au cours de sa construction est toujours bien alignée.

Jean-Pierre Petit nous parle d'un puits central dans lequel depuis le sommet on accès à une marque au sol. Cette mesure permet de vérifier qu'on ne dérive pas en hauteur. Mais c'est aussi le lieu pour placer une table d'orientation rotative avec des fils à plomb qui permettent de vérifier l'alignement des arrêtes.

table orientation pyramide gizeh mesure jppetit

Du coup, il y a un puits qui traverse la pyramide de haut en bas ! Est-ce qu'on l'a trouvé ?
Est-ce que c'est possible, il ne risque pas de traverser un chambre ?
.. et bien non !

Les chambres qui sont dans les pyramides de Gizeh sont toutes décalées de l'axe centrale !

Les seules chambres alignées sont souterraines. Ça montre bien qu'il y avait peut être l'envie de centrer la chambre. Mais avec le puits c'était pas possible. A méditer...

aucune chambre de pyramide de gizeh n est sur l axe centrale

Cette idée de puits pose une autre question, comment aller vérifier que le plomb est bien sur la marque au sol ?

Le plus simple est d'avoir une personne qui le vérifie. Mais alors elle doit être dans le fond du puits. Quand ça devient plus haut que 100m, c'est pas très pratique !!

Est-ce qu'il y a quelques part un accès au fond du puits depuis la base ?
Jean-Pierre petit semble le suggérer... encore un truc à vérifier.

Construction anti-sismique des monuments égyptiens

Tout le début de la BD, Jean-Pierre Petit nous rappelle que les constructions égyptiennes, (tout comme les constructions mégalithiques d'amérique du sud) sont très bien conçues pour résister aux tremblements de terre.

symetrie blocs de granite antisismique temple vallee kephren gizeh
Symétrie de blocs de granite avec des formes non régulières dans le temple de la vallée à Gizeh

Pour réaliser ce genre de construction, il faut des structures qui sont discontinues, des linteaux qui ont déjà une fente, ainsi il ne se brisent pas.

Jean-Pierre Petit a une théorie intéressante sur l'assemblage des blocs. Ils n'ont pas besoin d'être taillés, parfaitement bien à la base. C'est au moment où on les assemblent qu'on va user les blocs qui vont aller se joindre avec une "scie".

En fait c'est juste une lame de cuivre qui ne coupe pas grand choses, mais qui va emmener un abrasif.

finission bloc anti-sismique pyramide jp petit

Je trouve l'idée très intéressante. C'est à vérifier. Personnellement je suis également persuadé que de nombreux blocs sont en fait des géopolymères et donc des blocs moulés ! Ainsi pas de soucis de taille ! (dans tous les sens du terme !)

Les techniques sont certainement complémentaires.

Ceci nous amènes à la construction de l'intérieur des pyramides.

Jean-Pierre Petit nous indique une technique qui est faite par étape, il y a des blocs qui délimitent des espaces et dans cet espaces on fait du remplissage avec du tout venant. Ce qu'on appelle du libage: faire des murs extérieurs jolis, et des murs intérieurs avec du remplissage en vrac.

C'est aussi la théorie du noyau central, au vue de la seule partie qui reste de la pyramide de Meidum. Le reste s'étant effondré.

remplissage au tout venant libage pyramide gizeh jppetit platre

Les petites pierre en vrac, c'est plus simple, plus facile à transporter. Mais ça a aussi un net avantage anti-sismique. Secoue un tas de sable et il va garder sa forme pyramidale de tas de sable !

... mais.. mais attention, il ne faut pas que ces pierres en vrac puissent se compresser !

Sinon ça fait comme quand je mets un planton dans un pot. La terre a l'air bien là en suffisance, puis j'arrose... et pouf le volume diminue... tout se tasse...

Jean-Pierre Petit propose de lier ce libage avec du plâtre afin de solidifier le tout.

Personnellement ça me fait encore une fois penser aux géopolymères !
Avec un liant géopolymère ont stabilise tout, et même on créer carrément des vrais blocs de pierre.

Il y a déjà plusieurs études scientifique qui montrent que les géopolymères, des pierres moulées ont été très probablement utilisées pour construire les pyramides de Gizeh:

Je ne sais pas ce qu'en pense Jean-Pierre Petit. Mais moi je trouve intéressant de combiner ces techniques !

Tout ça permet de construire une pyramide rapidement.

Croyances et faux calculs autour du temps de construction et de la fonction des pyramides

Combien de blocs pour cette pyramide ?

Ça m'a toujours surpris qu'on évalue le nombre de blocs que continent la grande pyramide de Gizeh. (en général autour de 2 millions) Comment savoir ? On n'arrive même pas détecter les cavités vides dans la pyramide. Comment dire si on a affaire à des blocs ou du libage ?

Après on voit des calculs qui sont fait sur cette base dans le film la révélation des pyramides.... on abouti à 2 min 30 par bloc pour le tailler et le poser, ceci pour réussir à finir la pyramide dans les 20 ans de règne de Chéops...

Cette affirmation du film à fait couler beaucoup d'encre et déplacer de nombreux octets.... Un détracteur a expliqué, avec raison, que c'est comme imaginer le brossage de 150 000 cheveux un par un... il nous faudrait donc plus de 200 heures pour se brosser les cheveux !

Avec ce genre de combats inutiles on en oublie l'essentiel. Il est évident qu'une parallélisation du travail est nécessaire. Mais jusqu'à quel point c'est valable ? On peut pas simplement mettre 100 000 esclaves pour tirer un bloc comme de nombreux dessins le montrent....

Il en faut de la place sur les rampes pour 100 000 personnes !! ... et si on a un levier qui démultiplie la force plus besoin d'autant de monde.

Si on utilise des petits blocs de pierre et plus des gros, tout est plus facile!

mur en granite temple de la vallee kephren
énormes blocs de granite du temple de la vallée

L'histoire se réécrit sans cesse selon les croyances actuelles

Plus ça avance, l'histoire est réécrite avec le filtre des valeurs des personnes actuelles. Donc les esclaves c'est fini. Maintenant ce sont des ouvriers qualifiés.

La construction en 20 ans ? Il y a des gens qui doutent, car pourquoi les pyramides seraient des tombeaux ?

La théorie officielle actuelle va plutôt dans le sens du cénothaphe, un monument pour le rituel de la cérémonie du Ka. Le corps est ensuite inhumé ailleurs. Hérodote dit d'ailleurs que Chéops est inhumé au centre d'une ile sous le plateau de Gizeh !

Mais il y a encore un hic...

Comme dit plus haut Snéfrou a fait construire 3 pyramides !
C'était pour 3 cérémonies du Ka ?

On a jamais retrouvé de corps dans aucune des pyramides !

Il y a certes des "sarcophages". Mot grec qui signifie "mangeur de chair". Mais en égyptien on les appelle des "Neb ankh", paniers de vie. Ce qui n'est pas tout à fait pareil.

Peut être que la fonction des pyramides et leur coffres était tout autre !

Jean-Pierre Petit le pense aussi. Il dit dans la BD que c'était probablement un lieu d'initiation.

pyramide lieu initiation jppetit

Personnellement, en étant dans la chambre haute de la grande pyramide de Gizeh, j'ai été surpris par le son, par l'effet de résonance.

En étudiant les dimensions, c'est normal ! Tout est en résonance, on retrouve les rapports musicaux de la gamme de ptolémée dans les rapports entre les murs. On retrouve également une géométrie basées sur un double carré qui ouvre sur toutes les combinaisons possibles avec le nombre d'or.

Pour plus de détail voici mon article à propos de la géométrie sacrée.

Kheops-chambre-roi-maths dimension de la chambre haute de la grande pyramide de gizeh coudee royale egyptienne nombre or

Pour moi, je soupçonne que ces pyramides avaient des fonctions thérapeutique et initiatique.

Il y a souvent un lien avec le son et les lieux mégalithiques très anciens. On en reparler une autre fois....

La coudée royale égyptienne

Vu qu'on en parlait ci-dessus, Jean-Pierre Petit s'est aussi intéressé à la coudée royale égyptienne.

La coudée royale égyptienne, est une unité de mesure de longueur. On dit égyptienne, mais en fait c'est la même que celle des bâtisseurs de cathédrale qu'on retrouve dans la quine des bâtisseurs.

canne des batisseurs de cathedrale

Nous sommes habitués à une subdivision des unités de mesures dans un système décimal. Il y a chaque fois une rapport 10 entre les étages...

Dans l'ancien système le rapport entre les "étages" était basé sur le nombre d'or. J'ai fait tout un article qui explique ceci.

Puis on a nommé ces divisions d'unité de mesure en rapport avec des parties de notre corps qui sont également liées à des proportions liées au nombre d'or. La coudée, le pied, l'empan, la paume, la palme, etc...

Beaucoup ont cru que la coudée et/ou le pied était la mesure du pied d'un roi.... alors qu'en fait.. l'origine était toute autre... (et a été dévoyée aussi)

Bref, il y a beaucoup à dire sur la coudées royales égyptienne. Jean-Pierre Petit en étudié une autre partie. Il a étudié le fonctionnement de coudée qu'on a retrouvé matérialisée sur des barres de pierre ou de bois.

Coudées royales égyptiennes au musée de Saqqarah
Coudées royales égyptiennes au musée de Saqqarah

Jean-Pierre Petit a publié tout un article scientifique sur l'utilisation de la coudée royales égyptienne.

Ou plutôt l'utilisation de deux "baguettes" qui représente la coudée l'une contre l'autre, ceci afin de former le même principe que sur les verniers des pieds à coulisse. On a ainsi un instrument de mesure qui est très précis !

coudee royale egyptienne selon jp petit

Sur ces coudées, il y a aussi des indications pour remplir les clepsydres et compter le temps. A savoir que les heures ont des durées variables chez les égyptiens anciens ! Histoire de s'accorder sur les saisons....

Jean-Pierre Petit et les co-auteurs de ce document suggèrent que les règles retrouvées ne sont pas assez précises pour être utilisables avec les indications qu'elles contiennent. Elles ne seraient que des objets décoratifs !!!
... ce qu'attestent les textes dessus qui disent que c'est un cadeau en remerciement, etc..

Par contre les indications scientifiques sont valables et montrent qu'il devait y avoir d'autres instruments plus utilisables.

Bref... encore plus mystérieux cette coudée... On a pas fini d'en savoir plus.

Petit bonus... la coudée royale se dit "mH nswt" en égyptien......

Conclusions

Il me semble que cette théorie ouvre à quelques idées intéressantes.

Notamment, moi ce qui m'a beaucoup plus, c'est le système des noeuds autobloquants et des leviers. On a là une machine simple et efficace. Moi il me semble que c'est tout à fait plausible, surtout qu'une pièce, la poulie de renvoi, a été retrouvée en 1932 !

Là il y a quelques chose d'intéressant !

Sinon pour les gens qui se demandent où est ce que Jean-Pierre Petit est allé cherché toutes ces idées.... et bien il l'a avoué récemment....
Le héros de sa BD se retrouve dans une vie antérieur en égypte....
.... et bien c'est exactement ce qui est arrivé à Jean-Pierre Petit lors d'un voyage en égypte... il a simplement vu tout ça et il a pris des notes !

Bon, et bien comme d'habitude, garde l'esprit ouvert ! Tout est possible !
519 7148

Navigation au sein des articles

1 2
Remonter